SLC24A-mediated calcium exchange as an indispensable component of the diatom cell density-driven signaling pathway.

IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY
Xuehua Liu, Zhicheng Zuo, Xiujun Xie, Shan Gao, Songcui Wu, Wenhui Gu, Guangce Wang
{"title":"SLC24A-mediated calcium exchange as an indispensable component of the diatom cell density-driven signaling pathway.","authors":"Xuehua Liu, Zhicheng Zuo, Xiujun Xie, Shan Gao, Songcui Wu, Wenhui Gu, Guangce Wang","doi":"10.1093/ismejo/wrae039","DOIUrl":null,"url":null,"abstract":"<p><p>Diatom bloom is characterized by a rapid increase of population density. Perception of population density and physiological responses can significantly influence their survival strategies, subsequently impacting bloom fate. The population density itself can serve as a signal, which is perceived through chemical signals or chlorophyll fluorescence signals triggered by high cell density, and their intracellular signaling mechanisms remain to be elucidated. In this study, we focused on the model diatom, Phaeodactylum tricornutum, and designed an orthogonal experiment involving varying cell densities and light conditions, to stimulate the release of chemical signals and light-induced chlorophyll fluorescence signals. Utilizing RNA-Seq and Weighted Gene Co-expression Network Analysis, we identified four gene clusters displaying density-dependent expression patterns. Within these, a potential hub gene, PtSLC24A, encoding a Na+/Ca2+ exchanger, was identified. Based on molecular genetics, cellular physiology, computational structural biology, and in situ oceanic data, we propose a potential intracellular signaling mechanism related to cell density in marine diatoms using Ca2+: upon sensing population density signals mediated by chemical cues, the membrane-bound PtSLC24A facilitates the efflux of Ca2+ to maintain specific intracellular calcium levels, allowing the transduction of intracellular density signals, subsequently regulating physiological responses, including cell apoptosis, ultimately affecting algal blooms fate. These findings shed light on the calcium-mediated intracellular signaling mechanism of marine diatoms to changing population densities, and enhances our understanding of diatom bloom dynamics and their ecological implications.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982851/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae039","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diatom bloom is characterized by a rapid increase of population density. Perception of population density and physiological responses can significantly influence their survival strategies, subsequently impacting bloom fate. The population density itself can serve as a signal, which is perceived through chemical signals or chlorophyll fluorescence signals triggered by high cell density, and their intracellular signaling mechanisms remain to be elucidated. In this study, we focused on the model diatom, Phaeodactylum tricornutum, and designed an orthogonal experiment involving varying cell densities and light conditions, to stimulate the release of chemical signals and light-induced chlorophyll fluorescence signals. Utilizing RNA-Seq and Weighted Gene Co-expression Network Analysis, we identified four gene clusters displaying density-dependent expression patterns. Within these, a potential hub gene, PtSLC24A, encoding a Na+/Ca2+ exchanger, was identified. Based on molecular genetics, cellular physiology, computational structural biology, and in situ oceanic data, we propose a potential intracellular signaling mechanism related to cell density in marine diatoms using Ca2+: upon sensing population density signals mediated by chemical cues, the membrane-bound PtSLC24A facilitates the efflux of Ca2+ to maintain specific intracellular calcium levels, allowing the transduction of intracellular density signals, subsequently regulating physiological responses, including cell apoptosis, ultimately affecting algal blooms fate. These findings shed light on the calcium-mediated intracellular signaling mechanism of marine diatoms to changing population densities, and enhances our understanding of diatom bloom dynamics and their ecological implications.

SLC24A 介导的钙离子交换是硅藻细胞密度驱动信号途径不可或缺的组成部分。
硅藻水华的特点是种群密度迅速增加。对种群密度的感知和生理反应会极大地影响它们的生存策略,进而影响藻华的命运。种群密度本身可以作为一种信号,通过高细胞密度触发的化学信号或叶绿素荧光信号来感知,其细胞内信号机制仍有待阐明。在本研究中,我们以模式硅藻三尖杉为研究对象,设计了一个正交实验,涉及不同的细胞密度和光照条件,以刺激化学信号和光诱导叶绿素荧光信号的释放。利用 RNA-Seq 和加权基因共表达网络分析,我们确定了四个基因簇的表达模式与密度有关。在这些基因簇中,我们发现了一个潜在的枢纽基因,即编码 Na+/Ca2+ 交换的 PtSLC24A。基于分子遗传学、细胞生理学、计算结构生物学和海洋原位数据,我们提出了一种利用 Ca2+ 与海洋硅藻细胞密度相关的潜在细胞内信号机制:在感知由化学线索介导的种群密度信号时,膜结合的 PtSLC24A 会促进 Ca2+ 的外流,以维持特定的细胞内钙水平,从而实现细胞内密度信号的传导,随后调节包括细胞凋亡在内的生理反应,最终影响藻华的命运。这些发现揭示了海洋硅藻对种群密度变化的钙介导细胞内信号转导机制,加深了我们对硅藻藻华动态及其生态影响的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ISME Journal
ISME Journal 环境科学-生态学
CiteScore
22.10
自引率
2.70%
发文量
171
审稿时长
2.6 months
期刊介绍: The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信