Journal of Group Theory最新文献

筛选
英文 中文
Finitely generated metabelian groups arising from integer polynomials 由整数多项式产生的有限生成亚元群
3区 数学
Journal of Group Theory Pub Date : 2023-09-27 DOI: 10.1515/jgth-2023-0046
Derek J. S. Robinson
{"title":"Finitely generated metabelian groups arising from integer polynomials","authors":"Derek J. S. Robinson","doi":"10.1515/jgth-2023-0046","DOIUrl":"https://doi.org/10.1515/jgth-2023-0046","url":null,"abstract":"Abstract It is shown that there is a finitely generated metabelian group of finite torsion-free rank associated with each non-constant integer polynomial. It is shown how many structural properties of the group can be detected by inspecting the polynomial.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135477400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hall classes in linear groups 线性群中的霍尔类
3区 数学
Journal of Group Theory Pub Date : 2023-09-21 DOI: 10.1515/jgth-2023-0063
Francesco de Giovanni, Marco Trombetti, Bertram A. F. Wehrfritz
{"title":"Hall classes in linear groups","authors":"Francesco de Giovanni, Marco Trombetti, Bertram A. F. Wehrfritz","doi":"10.1515/jgth-2023-0063","DOIUrl":"https://doi.org/10.1515/jgth-2023-0063","url":null,"abstract":"Abstract A well-known theorem of Philip Hall states that if a group 𝐺 has a nilpotent normal subgroup 𝑁 such that <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>G</m:mi> <m:mo>/</m:mo> <m:msup> <m:mi>N</m:mi> <m:mo>′</m:mo> </m:msup> </m:mrow> </m:math> G/N^{prime} is nilpotent, then 𝐺 itself is nilpotent. We say that a group class 𝔛 is a Hall class if it contains every group 𝐺 admitting a nilpotent normal subgroup 𝑁 such that <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>G</m:mi> <m:mo>/</m:mo> <m:msup> <m:mi>N</m:mi> <m:mo>′</m:mo> </m:msup> </m:mrow> </m:math> G/N^{prime} belongs to 𝔛. Examples have been given in [F. de Giovanni, M. Trombetti and B. A. F. Wehfritz, Hall classes of groups, to appear] to show that finite-by-𝔛 groups do not form a Hall class for many natural choices of the Hall class 𝔛. Although these examples are often linear, our aim here is to prove that the situation is much better within certain natural subclasses of the universe of linear groups.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136129016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A closure operator on the subgroup lattice of GL(𝑛,𝑞) and PGL(𝑛,𝑞) in relation to the zeros of the Möbius function GL(𝑛,𝑞)和PGL(𝑛,𝑞)的子群格上与Möbius函数的零点相关的闭包算子
3区 数学
Journal of Group Theory Pub Date : 2023-09-19 DOI: 10.1515/jgth-2023-0021
Luca Di Gravina
{"title":"A closure operator on the subgroup lattice of GL(𝑛,𝑞) and PGL(𝑛,𝑞) in relation to the zeros of the Möbius function","authors":"Luca Di Gravina","doi":"10.1515/jgth-2023-0021","DOIUrl":"https://doi.org/10.1515/jgth-2023-0021","url":null,"abstract":"Abstract Let <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"double-struck\">F</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> mathbb{F}_{q} be the finite field with 𝑞 elements and consider the 𝑛-dimensional <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"double-struck\">F</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> mathbb{F}_{q} -vector space <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>V</m:mi> <m:mo>=</m:mo> <m:msubsup> <m:mi mathvariant=\"double-struck\">F</m:mi> <m:mi>q</m:mi> <m:mi>n</m:mi> </m:msubsup> </m:mrow> </m:math> V=mathbb{F}_{q}^{n} . In this paper, we define a closure operator on the subgroup lattice of the group <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>G</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mi>PGL</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>V</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> G=mathrm{PGL}(V) . Let 𝜇 denote the Möbius function of this lattice. The aim is to use this closure operator to characterize subgroups 𝐻 of 𝐺 for which <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>μ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>H</m:mi> <m:mo>,</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>≠</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> mu(H,G)neq 0 . Moreover, we establish a polynomial bound on the number <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>c</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>m</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> c(m) of closed subgroups 𝐻 of index 𝑚 in 𝐺 for which the lattice of 𝐻-invariant subspaces of 𝑉 is isomorphic to a product of chains. This bound depends only on 𝑚 and not on the choice of 𝑛 and 𝑞. It is achieved by considering a similar closure operator for the subgroup lattice of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>GL</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>V</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> mathrm{GL}(V) and the same results proven for this group.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135011557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the strong connectivity of the 2-Engel graphs of almost simple groups 关于几乎单群的2-Engel图的强连通性
3区 数学
Journal of Group Theory Pub Date : 2023-09-19 DOI: 10.1515/jgth-2023-0060
Francesca Dalla Volta, Fabio Mastrogiacomo, Pablo Spiga
{"title":"On the strong connectivity of the 2-Engel graphs of almost simple groups","authors":"Francesca Dalla Volta, Fabio Mastrogiacomo, Pablo Spiga","doi":"10.1515/jgth-2023-0060","DOIUrl":"https://doi.org/10.1515/jgth-2023-0060","url":null,"abstract":"Abstract The Engel graph of a finite group 𝐺 is a directed graph encoding the pairs of elements in 𝐺 satisfying some Engel word. Recent work of Lucchini and the third author shows that, except for a few well-understood cases, the Engel graphs of almost simple groups are strongly connected. In this paper, we give a refinement to this analysis.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135011556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Relative stable equivalences of Morita type for the principal blocks of finite groups and relative Brauer indecomposability 有限群主块的Morita型相对稳定等价及相对Brauer不可分解性
3区 数学
Journal of Group Theory Pub Date : 2023-09-19 DOI: 10.1515/jgth-2023-0033
Naoko Kunugi, Kyoichi Suzuki
{"title":"Relative stable equivalences of Morita type for the principal blocks of finite groups and relative Brauer indecomposability","authors":"Naoko Kunugi, Kyoichi Suzuki","doi":"10.1515/jgth-2023-0033","DOIUrl":"https://doi.org/10.1515/jgth-2023-0033","url":null,"abstract":"Abstract We discuss representations of finite groups having a common central 𝑝-subgroup 𝑍, where 𝑝 is a prime number. For the principal 𝑝-blocks, we give a method of constructing a relative 𝑍-stable equivalence of Morita type, which is a generalization of stable equivalence of Morita type and was introduced by Wang and Zhang in a more general setting. Then we generalize Linckelmann’s results on stable equivalences of Morita type to relative 𝑍-stable equivalences of Morita type. We also introduce the notion of relative Brauer indecomposability, which is a generalization of the notion of Brauer indecomposability. We give an equivalent condition for Scott modules to be relatively Brauer indecomposable, which is an analog of that given by Ishioka and the first author.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135010788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Graphical complexes of groups 群的图形复合体
3区 数学
Journal of Group Theory Pub Date : 2023-09-14 DOI: 10.1515/jgth-2021-0118
Tomasz Prytuła
{"title":"Graphical complexes of groups","authors":"Tomasz Prytuła","doi":"10.1515/jgth-2021-0118","DOIUrl":"https://doi.org/10.1515/jgth-2021-0118","url":null,"abstract":"Abstract We introduce graphical complexes of groups, which can be thought of as a generalisation of Coxeter systems with 1-dimensional nerves. We show that these complexes are strictly developable, and we equip the resulting Basic Construction with three structures of non-positive curvature: piecewise linear <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>CAT</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> mathrm{CAT}(0) , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>C</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>6</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> C(6) graphical small cancellation, and a systolic one. We then use these structures to establish various properties of the fundamental groups of these complexes, such as biautomaticity and the Tits Alternative. We isolate an easily checkable condition implying hyperbolicity of the fundamental groups, and we construct some non-hyperbolic examples. We also briefly discuss a parallel theory of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>C</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>4</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> C(4) - <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>T</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>4</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> T(4) graphical complexes of groups and outline their basic properties.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135488732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite 𝑝-groups of class two with a small multiple holomorph 具有小多重全纯型的第二类的有限𝑝-groups
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2023-09-06 DOI: 10.1515/jgth-2023-0054
A. Caranti, Cindy (Sin Yi) Tsang
{"title":"Finite 𝑝-groups of class two with a small multiple holomorph","authors":"A. Caranti, Cindy (Sin Yi) Tsang","doi":"10.1515/jgth-2023-0054","DOIUrl":"https://doi.org/10.1515/jgth-2023-0054","url":null,"abstract":"Abstract We consider the quotient group T ⁢ ( G ) T(G) of the multiple holomorph by the holomorph of a finite 𝑝-group 𝐺 of class two for an odd prime 𝑝. By work of the first-named author, we know that T ⁢ ( G ) T(G) contains a cyclic subgroup of order p r − 1 ⁢ ( p − 1 ) p^{r-1}(p-1) , where p r p^{r} is the exponent of the quotient of 𝐺 by its center. In this paper, we shall exhibit examples of 𝐺 (with r = 1 r=1 ) such that T ⁢ ( G ) T(G) has order exactly p − 1 p-1 , which is as small as possible.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78735271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Presentations of Schur covers of braid groups 编织组Schur覆盖的介绍
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2023-08-16 DOI: 10.1515/jgth-2023-0014
Toshiyuki Akita, Rikako Kawasaki, T. Satoh
{"title":"Presentations of Schur covers of braid groups","authors":"Toshiyuki Akita, Rikako Kawasaki, T. Satoh","doi":"10.1515/jgth-2023-0014","DOIUrl":"https://doi.org/10.1515/jgth-2023-0014","url":null,"abstract":"Abstract In this paper, we consider several basic facts of Schur covers of the symmetric groups and braid groups. In particular, we give explicit presentations of Schur covers of braid groups.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73543964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A characterization of finite groups having a single Galois conjugacy class of certain irreducible characters 具有单个伽罗瓦共轭类的有限群的刻划
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2023-07-25 DOI: 10.1515/jgth-2022-0215
Yuedi Zeng, Dongfang Yang
{"title":"A characterization of finite groups having a single Galois conjugacy class of certain irreducible characters","authors":"Yuedi Zeng, Dongfang Yang","doi":"10.1515/jgth-2022-0215","DOIUrl":"https://doi.org/10.1515/jgth-2022-0215","url":null,"abstract":"Abstract Let 𝐺 be a finite group and let Irr s ⁢ ( G ) mathrm{Irr}_{mathfrak{s}}(G) be the set of irreducible complex characters 𝜒 of 𝐺 such that χ ⁢ ( 1 ) 2 chi(1)^{2} does not divide the index of the kernel of 𝜒. In this paper, we classify the finite groups 𝐺 for which any two characters in Irr s ⁢ ( G ) mathrm{Irr}_{mathfrak{s}}(G) are Galois conjugate. In particular, we show that such groups are solvable with Fitting height 2.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74441398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A classification of the prime graphs of pseudo-solvable groups 伪可解群素数图的分类
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2023-07-18 DOI: 10.1515/jgth-2023-0018
Ziyu Huang, Thomas Michael Keller, Shane Kissinger, Wen Plotnick, Maya Roma, Yong Yang
{"title":"A classification of the prime graphs of pseudo-solvable groups","authors":"Ziyu Huang, Thomas Michael Keller, Shane Kissinger, Wen Plotnick, Maya Roma, Yong Yang","doi":"10.1515/jgth-2023-0018","DOIUrl":"https://doi.org/10.1515/jgth-2023-0018","url":null,"abstract":"The prime graph <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0018_ineq_0001.png\" /> <jats:tex-math>Gamma(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> of a finite group 𝐺 (also known as the Gruenberg–Kegel graph) has as its vertices the prime divisors of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0018_ineq_0002.png\" /> <jats:tex-math>lvert Grvert</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:mtext>-</m:mtext> <m:mo>⁢</m:mo> <m:mi>q</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0018_ineq_0003.png\" /> <jats:tex-math>ptextup{-}q</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an edge in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0018_ineq_0001.png\" /> <jats:tex-math>Gamma(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> if and only if 𝐺 has an element of order <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:mi>q</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0018_ineq_0005.png\" /> <jats:tex-math>pq</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Since their inception in the 1970s, these graphs have been studied extensively; however, completely classifying the possible prime graphs for larger families of groups remains a difficult problem. For solvable groups, such a classification was found in 2015. In this paper, we go beyond solvable groups for the first time and characterize the prime graphs of a more general class of groups we call pseudo-solvable. These are groups whose composition factors are either cyclic or isomorphic to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>A</m:mi> <m:mn>5</m:mn> </m:msub> </m:math> <jats:inline-graphic xmln","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138504127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信