Ziyu Huang, Thomas Michael Keller, Shane Kissinger, Wen Plotnick, Maya Roma, Yong Yang
{"title":"伪可解群素数图的分类","authors":"Ziyu Huang, Thomas Michael Keller, Shane Kissinger, Wen Plotnick, Maya Roma, Yong Yang","doi":"10.1515/jgth-2023-0018","DOIUrl":null,"url":null,"abstract":"The prime graph <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0018_ineq_0001.png\" /> <jats:tex-math>\\Gamma(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> of a finite group 𝐺 (also known as the Gruenberg–Kegel graph) has as its vertices the prime divisors of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0018_ineq_0002.png\" /> <jats:tex-math>\\lvert G\\rvert</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo></m:mo> <m:mtext>-</m:mtext> <m:mo></m:mo> <m:mi>q</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0018_ineq_0003.png\" /> <jats:tex-math>p\\textup{-}q</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an edge in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0018_ineq_0001.png\" /> <jats:tex-math>\\Gamma(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> if and only if 𝐺 has an element of order <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo></m:mo> <m:mi>q</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0018_ineq_0005.png\" /> <jats:tex-math>pq</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Since their inception in the 1970s, these graphs have been studied extensively; however, completely classifying the possible prime graphs for larger families of groups remains a difficult problem. For solvable groups, such a classification was found in 2015. In this paper, we go beyond solvable groups for the first time and characterize the prime graphs of a more general class of groups we call pseudo-solvable. These are groups whose composition factors are either cyclic or isomorphic to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>A</m:mi> <m:mn>5</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0018_ineq_0006.png\" /> <jats:tex-math>A_{5}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The classification is based on two conditions: the vertices <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mn>3</m:mn> <m:mo>,</m:mo> <m:mn>5</m:mn> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0018_ineq_0007.png\" /> <jats:tex-math>\\{2,3,5\\}</jats:tex-math> </jats:alternatives> </jats:inline-formula> form a triangle in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mover accent=\"true\"> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo>̄</m:mo> </m:mover> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0018_ineq_0008.png\" /> <jats:tex-math>\\overline{\\Gamma}(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>3</m:mn> <m:mo>,</m:mo> <m:mn>5</m:mn> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0018_ineq_0009.png\" /> <jats:tex-math>\\{p,3,5\\}</jats:tex-math> </jats:alternatives> </jats:inline-formula> form a triangle for some prime <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>≠</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0018_ineq_0010.png\" /> <jats:tex-math>p\\neq 2</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The ideas developed in this paper also lay the groundwork for future work on classifying and analyzing prime graphs of more general classes of finite groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A classification of the prime graphs of pseudo-solvable groups\",\"authors\":\"Ziyu Huang, Thomas Michael Keller, Shane Kissinger, Wen Plotnick, Maya Roma, Yong Yang\",\"doi\":\"10.1515/jgth-2023-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prime graph <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Γ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0018_ineq_0001.png\\\" /> <jats:tex-math>\\\\Gamma(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> of a finite group 𝐺 (also known as the Gruenberg–Kegel graph) has as its vertices the prime divisors of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0018_ineq_0002.png\\\" /> <jats:tex-math>\\\\lvert G\\\\rvert</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>p</m:mi> <m:mo></m:mo> <m:mtext>-</m:mtext> <m:mo></m:mo> <m:mi>q</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0018_ineq_0003.png\\\" /> <jats:tex-math>p\\\\textup{-}q</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an edge in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Γ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0018_ineq_0001.png\\\" /> <jats:tex-math>\\\\Gamma(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> if and only if 𝐺 has an element of order <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>p</m:mi> <m:mo></m:mo> <m:mi>q</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0018_ineq_0005.png\\\" /> <jats:tex-math>pq</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Since their inception in the 1970s, these graphs have been studied extensively; however, completely classifying the possible prime graphs for larger families of groups remains a difficult problem. For solvable groups, such a classification was found in 2015. In this paper, we go beyond solvable groups for the first time and characterize the prime graphs of a more general class of groups we call pseudo-solvable. These are groups whose composition factors are either cyclic or isomorphic to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>A</m:mi> <m:mn>5</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0018_ineq_0006.png\\\" /> <jats:tex-math>A_{5}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The classification is based on two conditions: the vertices <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mn>3</m:mn> <m:mo>,</m:mo> <m:mn>5</m:mn> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0018_ineq_0007.png\\\" /> <jats:tex-math>\\\\{2,3,5\\\\}</jats:tex-math> </jats:alternatives> </jats:inline-formula> form a triangle in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mover accent=\\\"true\\\"> <m:mi mathvariant=\\\"normal\\\">Γ</m:mi> <m:mo>̄</m:mo> </m:mover> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0018_ineq_0008.png\\\" /> <jats:tex-math>\\\\overline{\\\\Gamma}(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>3</m:mn> <m:mo>,</m:mo> <m:mn>5</m:mn> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0018_ineq_0009.png\\\" /> <jats:tex-math>\\\\{p,3,5\\\\}</jats:tex-math> </jats:alternatives> </jats:inline-formula> form a triangle for some prime <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>p</m:mi> <m:mo>≠</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0018_ineq_0010.png\\\" /> <jats:tex-math>p\\\\neq 2</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The ideas developed in this paper also lay the groundwork for future work on classifying and analyzing prime graphs of more general classes of finite groups.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2023-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
有限群𝐺(也称为Gruenberg-Kegel图)的质数图Γ (G) \Gamma (G)的顶点是| G | \lvert G \rvert的质数因子,p¹-q p\textup{-q}是Γ (G) \Gamma (G)中的一条边,当且仅当𝐺有一个p¹q pq阶的元素。自20世纪70年代出现以来,这些图表得到了广泛的研究;然而,对于较大群族的可能素图的完全分类仍然是一个难题。对于可解群,这种分类是在2015年发现的。在本文中,我们第一次超越了可解群,并刻画了一类更一般的群的素图,我们称之为伪可解群。这些群的组成因子是循环的或与a5 {A_5}同构的。分类基于两个条件:顶点{2,3,5{2,3,5}}在Γ (G) \overline{\Gamma} (G)中形成三角形,或{p,3,5 {p,3,5}}在某些素数p≠2 p \neq 2中形成三角形。本文发展的思想也为今后对更一般的有限群的素数图进行分类和分析奠定了基础。
A classification of the prime graphs of pseudo-solvable groups
The prime graph Γ(G)\Gamma(G) of a finite group 𝐺 (also known as the Gruenberg–Kegel graph) has as its vertices the prime divisors of |G|\lvert G\rvert, and p-qp\textup{-}q is an edge in Γ(G)\Gamma(G) if and only if 𝐺 has an element of order pqpq. Since their inception in the 1970s, these graphs have been studied extensively; however, completely classifying the possible prime graphs for larger families of groups remains a difficult problem. For solvable groups, such a classification was found in 2015. In this paper, we go beyond solvable groups for the first time and characterize the prime graphs of a more general class of groups we call pseudo-solvable. These are groups whose composition factors are either cyclic or isomorphic to A5A_{5}. The classification is based on two conditions: the vertices {2,3,5}\{2,3,5\} form a triangle in Γ̄(G)\overline{\Gamma}(G) or {p,3,5}\{p,3,5\} form a triangle for some prime p≠2p\neq 2. The ideas developed in this paper also lay the groundwork for future work on classifying and analyzing prime graphs of more general classes of finite groups.