Graphical complexes of groups

Pub Date : 2023-09-14 DOI:10.1515/jgth-2021-0118
Tomasz Prytuła
{"title":"Graphical complexes of groups","authors":"Tomasz Prytuła","doi":"10.1515/jgth-2021-0118","DOIUrl":null,"url":null,"abstract":"Abstract We introduce graphical complexes of groups, which can be thought of as a generalisation of Coxeter systems with 1-dimensional nerves. We show that these complexes are strictly developable, and we equip the resulting Basic Construction with three structures of non-positive curvature: piecewise linear <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>CAT</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> \\mathrm{CAT}(0) , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>C</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>6</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> C(6) graphical small cancellation, and a systolic one. We then use these structures to establish various properties of the fundamental groups of these complexes, such as biautomaticity and the Tits Alternative. We isolate an easily checkable condition implying hyperbolicity of the fundamental groups, and we construct some non-hyperbolic examples. We also briefly discuss a parallel theory of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>C</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>4</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> C(4) - <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>T</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>4</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> T(4) graphical complexes of groups and outline their basic properties.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jgth-2021-0118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We introduce graphical complexes of groups, which can be thought of as a generalisation of Coxeter systems with 1-dimensional nerves. We show that these complexes are strictly developable, and we equip the resulting Basic Construction with three structures of non-positive curvature: piecewise linear CAT ( 0 ) \mathrm{CAT}(0) , C ( 6 ) C(6) graphical small cancellation, and a systolic one. We then use these structures to establish various properties of the fundamental groups of these complexes, such as biautomaticity and the Tits Alternative. We isolate an easily checkable condition implying hyperbolicity of the fundamental groups, and we construct some non-hyperbolic examples. We also briefly discuss a parallel theory of C ( 4 ) C(4) - T ( 4 ) T(4) graphical complexes of groups and outline their basic properties.
分享
查看原文
群的图形复合体
摘要:我们引入群的图形复合体,它可以被认为是具有一维神经的Coxeter系统的推广。我们证明了这些复合体是严格可展的,并且我们给所得到的基本结构配备了三个非正曲率的结构:分段线性CAT¹(0)\ mathm {CAT}(0), C²(6)C(6)图形小消去,和一个收缩结构。然后,我们利用这些结构来建立这些配合物的基本基团的各种性质,如双自动性和Tits选择性。我们分离出一个容易检验的条件,暗示了基本群的双曲性,并构造了一些非双曲性的例子。我们还简要地讨论了C(4) C(4) - T(4) T(4)群的图解复合体的平行理论,并概述了它们的基本性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信