线性群中的霍尔类

Pub Date : 2023-09-21 DOI:10.1515/jgth-2023-0063
Francesco de Giovanni, Marco Trombetti, Bertram A. F. Wehrfritz
{"title":"线性群中的霍尔类","authors":"Francesco de Giovanni, Marco Trombetti, Bertram A. F. Wehrfritz","doi":"10.1515/jgth-2023-0063","DOIUrl":null,"url":null,"abstract":"Abstract A well-known theorem of Philip Hall states that if a group 𝐺 has a nilpotent normal subgroup 𝑁 such that <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>G</m:mi> <m:mo>/</m:mo> <m:msup> <m:mi>N</m:mi> <m:mo>′</m:mo> </m:msup> </m:mrow> </m:math> G/N^{\\prime} is nilpotent, then 𝐺 itself is nilpotent. We say that a group class 𝔛 is a Hall class if it contains every group 𝐺 admitting a nilpotent normal subgroup 𝑁 such that <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>G</m:mi> <m:mo>/</m:mo> <m:msup> <m:mi>N</m:mi> <m:mo>′</m:mo> </m:msup> </m:mrow> </m:math> G/N^{\\prime} belongs to 𝔛. Examples have been given in [F. de Giovanni, M. Trombetti and B. A. F. Wehfritz, Hall classes of groups, to appear] to show that finite-by-𝔛 groups do not form a Hall class for many natural choices of the Hall class 𝔛. Although these examples are often linear, our aim here is to prove that the situation is much better within certain natural subclasses of the universe of linear groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hall classes in linear groups\",\"authors\":\"Francesco de Giovanni, Marco Trombetti, Bertram A. F. Wehrfritz\",\"doi\":\"10.1515/jgth-2023-0063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A well-known theorem of Philip Hall states that if a group 𝐺 has a nilpotent normal subgroup 𝑁 such that <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>G</m:mi> <m:mo>/</m:mo> <m:msup> <m:mi>N</m:mi> <m:mo>′</m:mo> </m:msup> </m:mrow> </m:math> G/N^{\\\\prime} is nilpotent, then 𝐺 itself is nilpotent. We say that a group class 𝔛 is a Hall class if it contains every group 𝐺 admitting a nilpotent normal subgroup 𝑁 such that <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>G</m:mi> <m:mo>/</m:mo> <m:msup> <m:mi>N</m:mi> <m:mo>′</m:mo> </m:msup> </m:mrow> </m:math> G/N^{\\\\prime} belongs to 𝔛. Examples have been given in [F. de Giovanni, M. Trombetti and B. A. F. Wehfritz, Hall classes of groups, to appear] to show that finite-by-𝔛 groups do not form a Hall class for many natural choices of the Hall class 𝔛. Although these examples are often linear, our aim here is to prove that the situation is much better within certain natural subclasses of the universe of linear groups.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2023-0063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Philip Hall的一个著名定理指出,如果一个群𝐺有一个幂零的正子群倘使G/N′G/N^{\素数}是幂零的,则𝐺本身也是幂零的。我们说一个群类𝔛是一个霍尔类,如果它包含所有群𝐺承认一个幂零的正则子群(即G/N ' G/N^{\素数}属于𝔛)。[F]中已经给出了例子。de Giovanni, M. Trombetti和B. a . F. Wehfritz,群的霍尔类,以显示:对于霍尔类的许多自然选择𝔛,有限的-𝔛群不能形成霍尔类。虽然这些例子通常是线性的,但我们在这里的目的是证明在线性群的某些自然子类中情况要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Hall classes in linear groups
Abstract A well-known theorem of Philip Hall states that if a group 𝐺 has a nilpotent normal subgroup 𝑁 such that G / N G/N^{\prime} is nilpotent, then 𝐺 itself is nilpotent. We say that a group class 𝔛 is a Hall class if it contains every group 𝐺 admitting a nilpotent normal subgroup 𝑁 such that G / N G/N^{\prime} belongs to 𝔛. Examples have been given in [F. de Giovanni, M. Trombetti and B. A. F. Wehfritz, Hall classes of groups, to appear] to show that finite-by-𝔛 groups do not form a Hall class for many natural choices of the Hall class 𝔛. Although these examples are often linear, our aim here is to prove that the situation is much better within certain natural subclasses of the universe of linear groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信