GL(𝑛,𝑞)和PGL(𝑛,𝑞)的子群格上与Möbius函数的零点相关的闭包算子

Pub Date : 2023-09-19 DOI:10.1515/jgth-2023-0021
Luca Di Gravina
{"title":"GL(𝑛,𝑞)和PGL(𝑛,𝑞)的子群格上与Möbius函数的零点相关的闭包算子","authors":"Luca Di Gravina","doi":"10.1515/jgth-2023-0021","DOIUrl":null,"url":null,"abstract":"Abstract Let <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"double-struck\">F</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> \\mathbb{F}_{q} be the finite field with 𝑞 elements and consider the 𝑛-dimensional <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"double-struck\">F</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> \\mathbb{F}_{q} -vector space <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>V</m:mi> <m:mo>=</m:mo> <m:msubsup> <m:mi mathvariant=\"double-struck\">F</m:mi> <m:mi>q</m:mi> <m:mi>n</m:mi> </m:msubsup> </m:mrow> </m:math> V=\\mathbb{F}_{q}^{n} . In this paper, we define a closure operator on the subgroup lattice of the group <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>G</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mi>PGL</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>V</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> G=\\mathrm{PGL}(V) . Let 𝜇 denote the Möbius function of this lattice. The aim is to use this closure operator to characterize subgroups 𝐻 of 𝐺 for which <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>μ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>H</m:mi> <m:mo>,</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>≠</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> \\mu(H,G)\\neq 0 . Moreover, we establish a polynomial bound on the number <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>c</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>m</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> c(m) of closed subgroups 𝐻 of index 𝑚 in 𝐺 for which the lattice of 𝐻-invariant subspaces of 𝑉 is isomorphic to a product of chains. This bound depends only on 𝑚 and not on the choice of 𝑛 and 𝑞. It is achieved by considering a similar closure operator for the subgroup lattice of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>GL</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>V</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> \\mathrm{GL}(V) and the same results proven for this group.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A closure operator on the subgroup lattice of GL(𝑛,𝑞) and PGL(𝑛,𝑞) in relation to the zeros of the Möbius function\",\"authors\":\"Luca Di Gravina\",\"doi\":\"10.1515/jgth-2023-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi mathvariant=\\\"double-struck\\\">F</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> \\\\mathbb{F}_{q} be the finite field with 𝑞 elements and consider the 𝑛-dimensional <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi mathvariant=\\\"double-struck\\\">F</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> \\\\mathbb{F}_{q} -vector space <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>V</m:mi> <m:mo>=</m:mo> <m:msubsup> <m:mi mathvariant=\\\"double-struck\\\">F</m:mi> <m:mi>q</m:mi> <m:mi>n</m:mi> </m:msubsup> </m:mrow> </m:math> V=\\\\mathbb{F}_{q}^{n} . In this paper, we define a closure operator on the subgroup lattice of the group <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>G</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mi>PGL</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>V</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> G=\\\\mathrm{PGL}(V) . Let 𝜇 denote the Möbius function of this lattice. The aim is to use this closure operator to characterize subgroups 𝐻 of 𝐺 for which <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>μ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>H</m:mi> <m:mo>,</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>≠</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> \\\\mu(H,G)\\\\neq 0 . Moreover, we establish a polynomial bound on the number <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>c</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>m</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> c(m) of closed subgroups 𝐻 of index 𝑚 in 𝐺 for which the lattice of 𝐻-invariant subspaces of 𝑉 is isomorphic to a product of chains. This bound depends only on 𝑚 and not on the choice of 𝑛 and 𝑞. It is achieved by considering a similar closure operator for the subgroup lattice of <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>GL</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>V</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> \\\\mathrm{GL}(V) and the same results proven for this group.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2023-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要设F q \mathbb{F} _q{为具有𝑞元的有限域,考虑𝑛-dimensional F q }\mathbb{F} _q{ -向量空间V= F q n V= }\mathbb{F} _q{^}n{。本文在群G= PGL²(V) G= }\mathrm{PGL} (V)的子群格上定义了一个闭包算子。令其表示这个格的Möbius函数。目的是使用这个闭包算子来描述𝐺的子群𝐻,其中μ≠(H,G)≠0 \mu (H,G) \neq 0。此外,我们在𝐺中建立了指标𝑚的闭子群𝐻的数c¹(m) c(m)的多项式界,其中𝐻-invariant子空间的格同构于链的乘积。这个边界只取决于𝑚,而不取决于𝑛和𝑞的选择。通过考虑GL _ (V) \mathrm{GL} (V)的子群格的类似闭包算子,得到了同样的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A closure operator on the subgroup lattice of GL(𝑛,𝑞) and PGL(𝑛,𝑞) in relation to the zeros of the Möbius function
Abstract Let F q \mathbb{F}_{q} be the finite field with 𝑞 elements and consider the 𝑛-dimensional F q \mathbb{F}_{q} -vector space V = F q n V=\mathbb{F}_{q}^{n} . In this paper, we define a closure operator on the subgroup lattice of the group G = PGL ( V ) G=\mathrm{PGL}(V) . Let 𝜇 denote the Möbius function of this lattice. The aim is to use this closure operator to characterize subgroups 𝐻 of 𝐺 for which μ ( H , G ) 0 \mu(H,G)\neq 0 . Moreover, we establish a polynomial bound on the number c ( m ) c(m) of closed subgroups 𝐻 of index 𝑚 in 𝐺 for which the lattice of 𝐻-invariant subspaces of 𝑉 is isomorphic to a product of chains. This bound depends only on 𝑚 and not on the choice of 𝑛 and 𝑞. It is achieved by considering a similar closure operator for the subgroup lattice of GL ( V ) \mathrm{GL}(V) and the same results proven for this group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信