Journal of Membrane Biology最新文献

筛选
英文 中文
Studies of the Membrane Formation Techniques and Its Correlation with Properties and Performance: A Review 膜形成技术及其与性能的关系研究综述
IF 2.4 4区 生物学
Journal of Membrane Biology Pub Date : 2023-06-30 DOI: 10.14579/membrane_journal.2023.33.3.110
Kumari Nikita, Chivukula Narayana Murthy, S. Nam
{"title":"Studies of the Membrane Formation Techniques and Its Correlation with Properties and Performance: A Review","authors":"Kumari Nikita, Chivukula Narayana Murthy, S. Nam","doi":"10.14579/membrane_journal.2023.33.3.110","DOIUrl":"https://doi.org/10.14579/membrane_journal.2023.33.3.110","url":null,"abstract":"","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80324106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1,3-Dioxolane-Based CO2 Selective Polymer Membranes for Gas Separation 1,3-二恶氧烷基CO2选择性聚合物气体分离膜
IF 2.4 4区 生物学
Journal of Membrane Biology Pub Date : 2023-06-30 DOI: 10.14579/membrane_journal.2023.33.3.94
Iqubal Hossain, Asmaul Husna, H. Park
{"title":"1,3-Dioxolane-Based CO2 Selective Polymer Membranes for Gas Separation","authors":"Iqubal Hossain, Asmaul Husna, H. Park","doi":"10.14579/membrane_journal.2023.33.3.94","DOIUrl":"https://doi.org/10.14579/membrane_journal.2023.33.3.94","url":null,"abstract":"","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83548300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alkali Recovery by Electrodialysis Process: A Review 电渗析法回收碱的研究进展
IF 2.4 4区 生物学
Journal of Membrane Biology Pub Date : 2023-06-30 DOI: 10.14579/membrane_journal.2023.33.3.87
Sarsenbek Assel, R. Patel
{"title":"Alkali Recovery by Electrodialysis Process: A Review","authors":"Sarsenbek Assel, R. Patel","doi":"10.14579/membrane_journal.2023.33.3.87","DOIUrl":"https://doi.org/10.14579/membrane_journal.2023.33.3.87","url":null,"abstract":"","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77757116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Drug Uptake on Application of Electroporation in a Single-Cell Model. 在单细胞模型中应用电穿孔增强药物摄取。
IF 2.4 4区 生物学
Journal of Membrane Biology Pub Date : 2023-06-01 DOI: 10.1007/s00232-023-00283-z
Nilay Mondal, K S Yadav, D C Dalal
{"title":"Enhanced Drug Uptake on Application of Electroporation in a Single-Cell Model.","authors":"Nilay Mondal,&nbsp;K S Yadav,&nbsp;D C Dalal","doi":"10.1007/s00232-023-00283-z","DOIUrl":"https://doi.org/10.1007/s00232-023-00283-z","url":null,"abstract":"<p><p>Electroporation method is a useful tool for delivering drugs into various diseased tissues in the human body. As a result of an applied electric field, drug particles enter the intracellular compartment through the temporarily permeabilized cell membrane. Consequently, electroporation method allows better penetration of the drug into the diseased tissue and improves treatment clinically. In this study, a more generalized model of drug transport in a single cell is proposed. The model is able to capture non-homogeneous drug transport in the cell due to non-uniform cell membrane permeabilization. Several numerical experiments are conducted to understand the effects of electric field and drug permeability on drug uptake into the cell. Through investigation, the appropriate electric field and drug permeability are identified, which lead to sufficient drug uptake into the cell. This model can be used by experimentalists to get information prior to conduct any experiment, and it may help reduce the number of actual experiments that might be conducted otherwise.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9681796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The Role of Ferroptosis in the Pathogenesis of Osteoarthritis. 铁下垂在骨关节炎发病机制中的作用。
IF 2.4 4区 生物学
Journal of Membrane Biology Pub Date : 2023-06-01 DOI: 10.1007/s00232-023-00282-0
Hussein Riyadh Abdul Kareem Al-Hetty, Sada Jasim Abdulameer, Maha Waleed Alghazali, Fatime Satar Sheri, Marwan Mahmood Saleh, Abduladheem Turki Jalil
{"title":"The Role of Ferroptosis in the Pathogenesis of Osteoarthritis.","authors":"Hussein Riyadh Abdul Kareem Al-Hetty,&nbsp;Sada Jasim Abdulameer,&nbsp;Maha Waleed Alghazali,&nbsp;Fatime Satar Sheri,&nbsp;Marwan Mahmood Saleh,&nbsp;Abduladheem Turki Jalil","doi":"10.1007/s00232-023-00282-0","DOIUrl":"https://doi.org/10.1007/s00232-023-00282-0","url":null,"abstract":"<p><p>Osteoarthritis (OA) is the most common type of arthritis. Its high prevalence, especially in the elderly, and its negative impact on physical function make it a leading cause of disability in the elderly. Joint pain as well joint stiffness are the common classic signs of OA. Chondrocyte death together with loss of articular cartilage integrity are the main pathologic changes in OA. Non-steroidal anti-inflammatory drugs (NSAIDs) and glucocorticoids are commonly used for the management of OA; still, their effectiveness is limited, and no therapeutic strategy is able to fully stop OA progression. Ferroptosis is a kind of cell death, distinct from apoptosis and necroptosis, caused by iron-dependent peroxidation of membrane phospholipids that terminates cell life by disintegrating all plasma membranes. It has been suggested that ferroptosis has a critical role in decreased viability of chondrocytes in OA, and here, we review recent findings regarding the pathologic pathways that lead to chondrocyte ferroptosis, and discuss the possible therapeutic utility of ferroptosis inhibition in OA.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9685560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Hybrid Lymphatic Drug Delivery Vehicles as a New Avenue for Targeted Therapy: Lymphatic Trafficking, Applications, Challenges, and Future Horizons. 混合淋巴药物输送载体作为靶向治疗的新途径:淋巴运输、应用、挑战和未来前景。
IF 2.4 4区 生物学
Journal of Membrane Biology Pub Date : 2023-06-01 DOI: 10.1007/s00232-023-00280-2
Gamaleldin I Harisa, Abdelrahman Y Sherif, Fars K Alanazi
{"title":"Hybrid Lymphatic Drug Delivery Vehicles as a New Avenue for Targeted Therapy: Lymphatic Trafficking, Applications, Challenges, and Future Horizons.","authors":"Gamaleldin I Harisa,&nbsp;Abdelrahman Y Sherif,&nbsp;Fars K Alanazi","doi":"10.1007/s00232-023-00280-2","DOIUrl":"https://doi.org/10.1007/s00232-023-00280-2","url":null,"abstract":"<p><p>Lymphatic drug targeting is an effective approach for targeting immunomodulators, and chemotherapeutic drugs at a specific organ or cellular location. The cellular, paracellular, and dendritic cell trafficking machinery are involved in the lymphatic transport of therapeutic agents. The engineering of triggered and hybrid lymphatic drug delivery systems (LDDS) is a promising strategy to fight cancer metastasis and microbial pandemics. Hybrid lymphatic drug delivery systems can be tailored and developed by grafting the conventional LDDS with biological agents. Thus, hybrid LDDS could collect the benefits of conventional and biological delivery systems. Moreover, the fabrication of triggered LDDS increases drug accumulation in the lymphatic system in the response to an internal stimulus such as pH, and redox status or external such as magnetic field, temperature, and light. Stimuli-responsive LDD systems prevent premature release of payload and mediate selective drug biodistribution. This improves therapeutic impact and reduces the systemic side effect of anticancer, immunomodulatory, and antimicrobial therapeutics. This review highlights the challenges and future horizons of nanoscaled-triggered LDDS and their influence on the lymphatic trafficking of therapeutic molecules.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9906606/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9735682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Interaction of Odoroside A, A Known Natural Cardiac Glycoside, with Na+/K+-ATPase. 已知天然心脏糖苷-气味苷A与Na+/K+- atp酶的相互作用。
IF 2.4 4区 生物学
Journal of Membrane Biology Pub Date : 2023-06-01 DOI: 10.1007/s00232-023-00281-1
Yohei Takada, Kazuhiro Kaneko, Yoshiyuki Kawakami
{"title":"Interaction of Odoroside A, A Known Natural Cardiac Glycoside, with Na<sup>+</sup>/K<sup>+</sup>-ATPase.","authors":"Yohei Takada,&nbsp;Kazuhiro Kaneko,&nbsp;Yoshiyuki Kawakami","doi":"10.1007/s00232-023-00281-1","DOIUrl":"https://doi.org/10.1007/s00232-023-00281-1","url":null,"abstract":"<p><p>The nature of odoroside A, a cardiac glycoside (CG) extracted from Nerium oleander, as well as its chemical structure is quite similar to a well-known CG, ouabain possessing a steroid skeleton, a five-membered unsaturated lactone ring, and a sugar moiety as a common structure. Like ouabain, odoroside A inhibits the activity of Na<sup>+</sup>/K<sup>+</sup>-ATPase (NKA) and shows significant anticancer activity, however its inhibitory mechanism remains unknown. CGs show various physiological activities, including cardiotonic and anticancer activities, through the inhibition of NKA by direct interaction. Additionally, X-ray crystallographic analysis revealed the inhibitory mechanism of ouabain and digoxin in relation to NKA. By using different molecular modeling techniques, docking simulation of odoroside A and NKA was conducted based on the results of these X-ray crystallographic analyses. Furthermore, a comparison of the results with the binding characteristics of three known CGs (ouabain, digoxin, and digitoxin) was also conducted. Odoroside A fitted into the CG binding pocket on the α-subunit of NKA revealed by X-ray crystallography. It had key interactions with Thr797 and Phe783. Also, three known CGs showed similar interactions with Thr797 and Phe783. Interaction modes of odoroside A were quite similar to those of ouabain, digoxin, and digitoxin. Docking simulations indicated that the sugar moiety enhanced the interaction between NKA and CGs, but did not show enhanced NKA inhibitory activity because the sugar moiety was placed outside the entrance of active site. Thus, these results suggest that the inhibitory mechanism of odoroside A to NKA is the same as the known CGs.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9673351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Computational Study on Effect of KCNQ1 P535T Mutation in a Cardiac Ventricular Tissue. KCNQ1 P535T突变对心脏心室组织影响的计算研究
IF 2.4 4区 生物学
Journal of Membrane Biology Pub Date : 2023-06-01 DOI: 10.1007/s00232-023-00287-9
Helan Satish, Ramasubba Reddy Machireddy
{"title":"Computational Study on Effect of KCNQ1 P535T Mutation in a Cardiac Ventricular Tissue.","authors":"Helan Satish,&nbsp;Ramasubba Reddy Machireddy","doi":"10.1007/s00232-023-00287-9","DOIUrl":"https://doi.org/10.1007/s00232-023-00287-9","url":null,"abstract":"<p><p>Heart diseases such as arrhythmia are the main causes of sudden death. Arrhythmias are typically caused by mutations in specific genes, damage in the cardiac tissue, or due to some chemical exposure. Arrhythmias caused due to mutation is called inherited arrhythmia. Induced arrhythmias are caused due to tissue damage or chemical exposure. Mutations in genes that encode ion channels of the cardiac cells usually result in (dysfunction) improper functioning of the channel. Improper functioning of the ion channel may lead to major changes in the action potential (AP) of the cardiac cells. This further leads to distorted electrical activity of the heart. Distorted electrical activity will affect the ECG that results in arrhythmia. KCNQ1 P535T mutation is one such gene mutation that encodes the potassium ion channel (KV7.1) of the cardiac ventricular tissue. Its clinical significance is not known. This study aims to perform a simulation study on P535T mutation in the KCNQ1 gene that encodes the potassium ion channel KV7.1 in the ventricular tissue grid. The effect of P535T mutation on transmural tissue grids for three genotypes (wild type, heterozygous, and homozygous) of cells are studied and the generated pseudo-ECGs are compared. Results show the delayed repolarization in the cells of ventricular tissue grid. Slower propagation of action potential in the transmural tissue grid is observed in the mutated (heterozygous and homozygous) genotypes. Longer QT interval is also observed in the pseudo-ECG of heterozygous and homozygous genotype tissue grids. From the pseudo-ECGs, it is observed that KCNQ1 P535T mutation leads to Long QT Syndrome (LQTS) which may result in life-threatening arrhythmias, such as Torsade de Pointes (TdP), Jervell and Lange-Nielsen syndrome (JLNS), and Romano-Ward syndrome (RWS).</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9674530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of Purity, Functionality, Stability, and Lipid Composition of Cyclofos-nAChR-Detergent Complexes from Torpedo californica Using Lipid Matrix and Macroscopic Electrophysiology. 用脂质基质和宏观电生理学评价加利福尼亚鱼雷中cyclofos - nachr -洗涤剂复合物的纯度、功能、稳定性和脂质组成。
IF 2.4 4区 生物学
Journal of Membrane Biology Pub Date : 2023-06-01 DOI: 10.1007/s00232-023-00285-x
Orestes Quesada, Joel E González-Nieves, José Colón, Rafael Maldonado-Hernández, Carol González-Freire, Jesús Acevedo-Cintrón, Irvin D Rosado-Millán, José A Lasalde-Dominicci
{"title":"Assessment of Purity, Functionality, Stability, and Lipid Composition of Cyclofos-nAChR-Detergent Complexes from Torpedo californica Using Lipid Matrix and Macroscopic Electrophysiology.","authors":"Orestes Quesada,&nbsp;Joel E González-Nieves,&nbsp;José Colón,&nbsp;Rafael Maldonado-Hernández,&nbsp;Carol González-Freire,&nbsp;Jesús Acevedo-Cintrón,&nbsp;Irvin D Rosado-Millán,&nbsp;José A Lasalde-Dominicci","doi":"10.1007/s00232-023-00285-x","DOIUrl":"https://doi.org/10.1007/s00232-023-00285-x","url":null,"abstract":"<p><p>The main objective of the present study was to find detergents that can maintain the functionality and stability of the Torpedo californica nicotinic acetylcholine receptor (Tc-nAChR). We examined the functionality, stability, and purity analysis of affinity-purified Tc-nAChR solubilized in detergents from the Cyclofos (CF) family [cyclofoscholine 4 (CF-4), cyclofoscholine 6 (CF-6), and cyclofloscholine 7 (CF-7)]. The functionality of the CF-Tc-nAChR-detergent complex (DC) was evaluated using the Two Electrode Voltage Clamp (TEVC) method. To assess stability, we used the florescence recovery after photobleaching (FRAP) in Lipidic Cubic Phase (LCP) methodology. We also performed a lipidomic analysis using Ultra-Performance Liquid Chromatography (UPLC) coupled to electrospray ionization mass spectrometry (ESI-MS/MS) to evaluate the lipid composition of the CF-Tc-nAChR-DCs. The CF-4-Tc-nAChR-DC displayed a robust macroscopic current (- 200 ± 60 nA); however, the CF-6-Tc-nAChR-DC and CF-7-Tc-nAChR-DC displayed significant reductions in the macroscopic currents. The CF-6-Tc-nAChR and CF-4-Tc-nAChR displayed higher fractional florescence recovery. Addition of cholesterol produced a mild enhancement of the mobile fraction on the CF-6-Tc-nAChR. The lipidomic analysis revealed that the CF-7-Tc-nAChR-DC displayed substantial delipidation, consistent with the lack of stability and functional response of this complex. Although the CF-6-nAChR-DC complex retained the largest amount of lipids, it showed a loss of six lipid species [SM(d16:1/18:0); PC(18:2/14:1); PC(14:0/18:1); PC(16:0/18:1); PC(20:5/20:4), and PC(20:4/20:5)] that are present in the CF-4-nAChR-DC. Overall, the CF-4-nAChR displayed robust functionality, significant stability, and the best purity among the three CF detergents; therefore, CF-4 is a suitable candidate to prepare Tc-nAChR crystals for structural studies.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157581/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10039612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid Pacing Decreases L-type Ca2+ Current and Alters Cacna1c Isogene Expression in Primary Cultured Rat Left Ventricular Myocytes. 快速起搏降低l型Ca2+电流并改变原代培养大鼠左心室肌细胞Cacna1c异基因表达。
IF 2.4 4区 生物学
Journal of Membrane Biology Pub Date : 2023-06-01 DOI: 10.1007/s00232-023-00284-y
Anne Ritzer, Tobias Roeschl, Sandra Nay, Elena Rudakova, Tilmann Volk
{"title":"Rapid Pacing Decreases L-type Ca<sup>2+</sup> Current and Alters Cacna1c Isogene Expression in Primary Cultured Rat Left Ventricular Myocytes.","authors":"Anne Ritzer,&nbsp;Tobias Roeschl,&nbsp;Sandra Nay,&nbsp;Elena Rudakova,&nbsp;Tilmann Volk","doi":"10.1007/s00232-023-00284-y","DOIUrl":"https://doi.org/10.1007/s00232-023-00284-y","url":null,"abstract":"<p><p>The L-type calcium current (I<sub>CaL</sub>) is the first step in cardiac excitation-contraction-coupling and plays an important role in regulating contractility, but also in electrical and mechanical remodeling. Primary culture of cardiomyocytes, a widely used tool in cardiac ion channel research, is associated with substantial morphological, functional and electrical changes some of which may be prevented by electrical pacing. We therefore investigated I<sub>CaL</sub> directly after cell isolation and after 24 h of primary culture with and without regular pacing at 1 and 3 Hz in rat left ventricular myocytes. Moreover, we analyzed total mRNA expression of the pore forming subunit of the L-type Ca<sup>2+</sup> channel (cacna1c) as well as the expression of splice variants of its exon 1 that contribute to specificity of I<sub>CaL</sub> in different tissue such as cardiac myocytes or smooth muscle. 24 h incubation without pacing decreased I<sub>CaL</sub> density by ~ 10% only. Consistent with this decrease we observed a decrease in the expression of total cacna1c and of exon 1a, the dominant variant of cardiomyocytes, while expression of exon 1b and 1c increased. Pacing for 24 h at 1 and 3 Hz led to a substantial decrease in I<sub>CaL</sub> density by 30%, mildly slowed I<sub>CaL</sub> inactivation and shifted steady-state inactivation to more negative potentials. Total cacna1c mRNA expression was substantially decreased by pacing, as was the expression of exon 1b and 1c. Taken together, electrical silence introduces fewer alterations in I<sub>CaL</sub> density and cacna1c mRNA expression than pacing for 24 h and should therefore be the preferred approach for primary culture of cardiomyocytes.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10219890/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9686064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信