不同哺乳动物的孤立心脏瑞诺丁受体功能各不相同

IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of Membrane Biology Pub Date : 2024-04-01 Epub Date: 2024-01-29 DOI:10.1007/s00232-023-00301-0
Catherine Carvajal, Jiajie Yan, Alma Nani, Jaime DeSantiago, Xiaoping Wan, Isabelle Deschenes, Xun Ai, Michael Fill
{"title":"不同哺乳动物的孤立心脏瑞诺丁受体功能各不相同","authors":"Catherine Carvajal, Jiajie Yan, Alma Nani, Jaime DeSantiago, Xiaoping Wan, Isabelle Deschenes, Xun Ai, Michael Fill","doi":"10.1007/s00232-023-00301-0","DOIUrl":null,"url":null,"abstract":"<p><p>Concerted robust opening of cardiac ryanodine receptors' (RyR2) Ca<sup>2+</sup> release 1oplasmic reticulum (SR) is fundamental for normal systolic cardiac function. During diastole, infrequent spontaneous RyR2 openings mediate the SR Ca<sup>2+</sup> leak that normally constrains SR Ca<sup>2+</sup> load. Abnormal large diastolic RyR2-mediated Ca<sup>2+</sup> leak events can cause delayed after depolarizations (DADs) and arrhythmias. The RyR2-associated mechanisms underlying these processes are being extensively studied at multiple levels utilizing various model animals. Since there are well-described species-specific differences in cardiac intracellular Ca<sup>2+</sup> handing in situ, we tested whether or not single RyR2 function in vitro retains this species specificity. We isolated RyR2-rich heavy SR microsomes from mouse, rat, rabbit, and human ventricular muscle and quantified RyR2 function using identical solutions and methods. The single RyR2 cytosolic Ca<sup>2+</sup> sensitivity was similar across these species. However, there were significant species differences in single RyR2 mean open times in both systole and diastole-like solutions. In diastole-like solutions, single rat/mouse RyR2 open probability and frequency of long openings (> 6 ms) were similar, but these values were significantly greater than those of either single rabbit or human RyR2s. We propose these in vitro single RyR2 functional differences across species stem from the species-specific RyR2 regulatory environment present in the source tissue. Our results show the single rabbit RyR2 functional attributes, particularly in diastole-like conditions, replicate those of single human RyR2 best among the species tested.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299243/pdf/","citationCount":"0","resultStr":"{\"title\":\"Isolated Cardiac Ryanodine Receptor Function Varies Between Mammals.\",\"authors\":\"Catherine Carvajal, Jiajie Yan, Alma Nani, Jaime DeSantiago, Xiaoping Wan, Isabelle Deschenes, Xun Ai, Michael Fill\",\"doi\":\"10.1007/s00232-023-00301-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Concerted robust opening of cardiac ryanodine receptors' (RyR2) Ca<sup>2+</sup> release 1oplasmic reticulum (SR) is fundamental for normal systolic cardiac function. During diastole, infrequent spontaneous RyR2 openings mediate the SR Ca<sup>2+</sup> leak that normally constrains SR Ca<sup>2+</sup> load. Abnormal large diastolic RyR2-mediated Ca<sup>2+</sup> leak events can cause delayed after depolarizations (DADs) and arrhythmias. The RyR2-associated mechanisms underlying these processes are being extensively studied at multiple levels utilizing various model animals. Since there are well-described species-specific differences in cardiac intracellular Ca<sup>2+</sup> handing in situ, we tested whether or not single RyR2 function in vitro retains this species specificity. We isolated RyR2-rich heavy SR microsomes from mouse, rat, rabbit, and human ventricular muscle and quantified RyR2 function using identical solutions and methods. The single RyR2 cytosolic Ca<sup>2+</sup> sensitivity was similar across these species. However, there were significant species differences in single RyR2 mean open times in both systole and diastole-like solutions. In diastole-like solutions, single rat/mouse RyR2 open probability and frequency of long openings (> 6 ms) were similar, but these values were significantly greater than those of either single rabbit or human RyR2s. We propose these in vitro single RyR2 functional differences across species stem from the species-specific RyR2 regulatory environment present in the source tissue. Our results show the single rabbit RyR2 functional attributes, particularly in diastole-like conditions, replicate those of single human RyR2 best among the species tested.</p>\",\"PeriodicalId\":50129,\"journal\":{\"name\":\"Journal of Membrane Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299243/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00232-023-00301-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-023-00301-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

心脏雷诺丁受体(RyR2)Ca2+释放1质网(SR)的协同强力开放是心脏正常收缩功能的基础。在舒张期,不频繁的自发 RyR2 开放介导了 SR Ca2+ 泄漏,而这种泄漏通常会限制 SR Ca2+ 负荷。不正常的大量舒张期 RyR2 介导的 Ca2+ 泄漏事件可导致延迟去极化(DAD)和心律失常。目前正在利用各种模式动物从多个层面广泛研究这些过程的 RyR2 相关机制。由于心脏细胞内 Ca2+ 原位处理存在物种特异性差异,我们测试了体外单一 RyR2 功能是否保留了这种物种特异性。我们从小鼠、大鼠、兔子和人的心室肌肉中分离出富含 RyR2 的重 SR 微粒体,并使用相同的溶液和方法对 RyR2 的功能进行了量化。这些物种的单一 RyR2 胞质 Ca2+ 敏感性相似。然而,在类收缩溶液和类舒张溶液中,单个 RyR2 的平均开放时间存在明显的物种差异。在舒张样溶液中,单个大鼠/小鼠 RyR2 的开放概率和长开放(> 6 毫秒)频率相似,但这些值明显高于单个兔或人 RyR2。我们认为,这些体外单个 RyR2 在不同物种间的功能差异源于源组织中存在的物种特异性 RyR2 调节环境。我们的结果表明,在所测试的物种中,单个兔 RyR2 的功能属性,尤其是在类舒张条件下,与单个人 RyR2 的功能属性复制得最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Isolated Cardiac Ryanodine Receptor Function Varies Between Mammals.

Isolated Cardiac Ryanodine Receptor Function Varies Between Mammals.

Concerted robust opening of cardiac ryanodine receptors' (RyR2) Ca2+ release 1oplasmic reticulum (SR) is fundamental for normal systolic cardiac function. During diastole, infrequent spontaneous RyR2 openings mediate the SR Ca2+ leak that normally constrains SR Ca2+ load. Abnormal large diastolic RyR2-mediated Ca2+ leak events can cause delayed after depolarizations (DADs) and arrhythmias. The RyR2-associated mechanisms underlying these processes are being extensively studied at multiple levels utilizing various model animals. Since there are well-described species-specific differences in cardiac intracellular Ca2+ handing in situ, we tested whether or not single RyR2 function in vitro retains this species specificity. We isolated RyR2-rich heavy SR microsomes from mouse, rat, rabbit, and human ventricular muscle and quantified RyR2 function using identical solutions and methods. The single RyR2 cytosolic Ca2+ sensitivity was similar across these species. However, there were significant species differences in single RyR2 mean open times in both systole and diastole-like solutions. In diastole-like solutions, single rat/mouse RyR2 open probability and frequency of long openings (> 6 ms) were similar, but these values were significantly greater than those of either single rabbit or human RyR2s. We propose these in vitro single RyR2 functional differences across species stem from the species-specific RyR2 regulatory environment present in the source tissue. Our results show the single rabbit RyR2 functional attributes, particularly in diastole-like conditions, replicate those of single human RyR2 best among the species tested.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Biology
Journal of Membrane Biology 生物-生化与分子生物学
CiteScore
4.80
自引率
4.20%
发文量
63
审稿时长
6-12 weeks
期刊介绍: The Journal of Membrane Biology is dedicated to publishing high-quality science related to membrane biology, biochemistry and biophysics. In particular, we welcome work that uses modern experimental or computational methods including but not limited to those with microscopy, diffraction, NMR, computer simulations, or biochemistry aimed at membrane associated or membrane embedded proteins or model membrane systems. These methods might be applied to study topics like membrane protein structure and function, membrane mediated or controlled signaling mechanisms, cell-cell communication via gap junctions, the behavior of proteins and lipids based on monolayer or bilayer systems, or genetic and regulatory mechanisms controlling membrane function. Research articles, short communications and reviews are all welcome. We also encourage authors to consider publishing ''negative'' results where experiments or simulations were well performed, but resulted in unusual or unexpected outcomes without obvious explanations. While we welcome connections to clinical studies, submissions that are primarily clinical in nature or that fail to make connections to the basic science issues of membrane structure, chemistry and function, are not appropriate for the journal. In a similar way, studies that are primarily descriptive and narratives of assays in a clinical or population study are best published in other journals. If you are not certain, it is entirely appropriate to write to us to inquire if your study is a good fit for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信