Journal of Membrane Biology最新文献

筛选
英文 中文
Correction to: Introduction to Special Issue on Role of Membranes in the Pore-Formation Mechanism of Pore-Forming Proteins and Toxins. 更正:《膜在成孔蛋白和毒素的成孔机制中的作用》特刊导言。
IF 2.3 4区 生物学
Journal of Membrane Biology Pub Date : 2025-07-11 DOI: 10.1007/s00232-025-00356-1
Kausik Chattopadhyay
{"title":"Correction to: Introduction to Special Issue on Role of Membranes in the Pore-Formation Mechanism of Pore-Forming Proteins and Toxins.","authors":"Kausik Chattopadhyay","doi":"10.1007/s00232-025-00356-1","DOIUrl":"10.1007/s00232-025-00356-1","url":null,"abstract":"","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144610228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stomatin and Stomatin-Like Proteins Can Regulate Transporter Proteins Activity and Has a Role in Cancer Metastasis. 口蛋白和口蛋白样蛋白可调节转运蛋白活性并在肿瘤转移中起作用。
IF 2.3 4区 生物学
Journal of Membrane Biology Pub Date : 2025-07-10 DOI: 10.1007/s00232-025-00355-2
Abira Dey, Debabani Ganguly
{"title":"Stomatin and Stomatin-Like Proteins Can Regulate Transporter Proteins Activity and Has a Role in Cancer Metastasis.","authors":"Abira Dey, Debabani Ganguly","doi":"10.1007/s00232-025-00355-2","DOIUrl":"https://doi.org/10.1007/s00232-025-00355-2","url":null,"abstract":"<p><p>Stomatin, encoded by STOM gene, is an integral membrane protein found in a wide variety of species. Although years have passed since the identification of stomatin, little has been known about the functional insights of stomatin among which stomatin undergoing homo-oligomerization, post and reverse-post modifications are the notable ones. Stomatin downregulation or overexpression is directly connected to its ability to control neutrophil degranulation, modulate activities of transporter proteins, and mediate cancer metastasis. Stomatin shares about 40-80% sequence similarity at its signature SPFH (stomatin, prohibitin, flotillin and Hlfk) domain region with the stomatin-like proteins (SLPs). Although stomatin and SLPs are reported to have various therapeutic activities, still gaps are there regarding their plausible mechanistic insights. Therefore, in future, studies should be aimed toward investigating the possible mechanistic pathways controlled by stomatin and SLPs which can be employed to understand the basis of many therapeutic targets. This review briefs about the different functions of stomatin focusing mainly on the transporter proteins and carcinogenicity modulation by stomatin and SLPs.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144602149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Passage of the Channel-Forming Agent Nystatin Through Ergosterol-Containing Lipid Membranes. 制霉菌素通过含麦角甾醇脂质膜的通道形成剂。
IF 2.3 4区 生物学
Journal of Membrane Biology Pub Date : 2025-07-07 DOI: 10.1007/s00232-025-00354-3
Megi Tinev, Luka Kristanc, Gregor Gomišček, Bojan Božič
{"title":"Passage of the Channel-Forming Agent Nystatin Through Ergosterol-Containing Lipid Membranes.","authors":"Megi Tinev, Luka Kristanc, Gregor Gomišček, Bojan Božič","doi":"10.1007/s00232-025-00354-3","DOIUrl":"https://doi.org/10.1007/s00232-025-00354-3","url":null,"abstract":"<p><p>The passage of nystatin through the ergosterol-containing phospholipid bilayer was studied on monovesicular and multivesicular giant unilamellar vesicles (GUVs and MVVs). Phase-contrast optical microscopy was used to examine vesicles composed of a palmitoyl-oleoyl-phosphatidyl-choline (POPC) bilayer with either 15 or 45 mol% ergosterol. Three types of vesicles were analyzed: (i) GUVs, (ii) outer vesicles (outGUVs) of MVVs, and (iii) inner vesicles (inGUVs) of MVVs. The times of their ruptures were determined after their exposure to nystatin at concentrations of 250 and 500 <math><mi>μ</mi></math> M. At both concentrations, the times that the inGUVs spent in the nystatin solution after the rupture of the corresponding outGUVs were significantly shorter than the rupture times of individual GUVs of the similar size. These differences in rupture times demonstrate that the ergosterol-containing POPC membrane is permeable to nystatin.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144576843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mycobacterium tuberculosis TtfA is a Highly Stable Membrane-Anchored DNA-Binding Protein. 结核分枝杆菌TtfA是一种高度稳定的膜锚定dna结合蛋白。
IF 2.3 4区 生物学
Journal of Membrane Biology Pub Date : 2025-06-26 DOI: 10.1007/s00232-025-00352-5
Saksham Jain, Akanksha Gajanan Patil, Saniya Patil, Raju Mukherjee, Vikas Jain, Radhakrishnan Mahalakshmi
{"title":"Mycobacterium tuberculosis TtfA is a Highly Stable Membrane-Anchored DNA-Binding Protein.","authors":"Saksham Jain, Akanksha Gajanan Patil, Saniya Patil, Raju Mukherjee, Vikas Jain, Radhakrishnan Mahalakshmi","doi":"10.1007/s00232-025-00352-5","DOIUrl":"https://doi.org/10.1007/s00232-025-00352-5","url":null,"abstract":"<p><p>Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a deadly intracellular pathogen, with a persistent infectivity and high morbidity rate. Mtb has successfully evaded drugs and modern antibiotics, while also developing resistance and adaptability. To obtain newer avenues for therapeutics against Mtb, we proposed to identify and characterize membrane proteins of Mtb. To this end, we report the successful characterization of the locus rv0383c, which codes for a 284-residue membrane-anchored protein. We show that the protein product, named TtfA, possesses an N-terminal transmembrane helix, a low complexity region, an α + β central region, and a C-terminally highly unstructured region. Our studies reveal that the extramembranous domain possesses non-specific DNA-binding ability. Additionally, TtfA folds into a highly stable structure that resists thermal unfolding. TtfA is selectively sensitive to the surrounding pH. The promising outcomes we obtain with TtfA as one of the next-generation antibiotic targets against Mtb can pave the way for characterizing other membrane proteins toward finding long-term cures for this endemic disease.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144499041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic Bacterial Membrane Models for Comprehending Membrane Dynamics. 理解膜动力学的仿生细菌膜模型。
IF 2.3 4区 生物学
Journal of Membrane Biology Pub Date : 2025-06-25 DOI: 10.1007/s00232-025-00351-6
Harsha Bajaj
{"title":"Biomimetic Bacterial Membrane Models for Comprehending Membrane Dynamics.","authors":"Harsha Bajaj","doi":"10.1007/s00232-025-00351-6","DOIUrl":"https://doi.org/10.1007/s00232-025-00351-6","url":null,"abstract":"","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144486809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction to Special Issue on Role of Membranes in the Pore-Formation Mechanism of Pore-Forming Proteins and Toxins. 《膜在成孔蛋白和毒素的成孔机制中的作用》特刊导论。
IF 2.3 4区 生物学
Journal of Membrane Biology Pub Date : 2025-06-25 DOI: 10.1007/s00232-025-00353-4
Kausik Chattopadhyay
{"title":"Introduction to Special Issue on Role of Membranes in the Pore-Formation Mechanism of Pore-Forming Proteins and Toxins.","authors":"Kausik Chattopadhyay","doi":"10.1007/s00232-025-00353-4","DOIUrl":"10.1007/s00232-025-00353-4","url":null,"abstract":"","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144486810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resurrection of the Helical Hairpin Hypothesis for Understanding Coronavirus Fusion. 理解冠状病毒融合的螺旋发夹假说的复活。
IF 2.3 4区 生物学
Journal of Membrane Biology Pub Date : 2025-06-24 DOI: 10.1007/s00232-025-00350-7
Sahil Lall, M Vijayasarathy, N V Joshi, P Balaram
{"title":"Resurrection of the Helical Hairpin Hypothesis for Understanding Coronavirus Fusion.","authors":"Sahil Lall, M Vijayasarathy, N V Joshi, P Balaram","doi":"10.1007/s00232-025-00350-7","DOIUrl":"https://doi.org/10.1007/s00232-025-00350-7","url":null,"abstract":"<p><p>Coronaviruses use the spike protein (spike) to bind to target cells, and fuse the viral envelope with a host lipid membrane. Spike is a large trimeric surface glycoprotein, anchored to the viral membrane (envelope) by a single membrane-spanning polypeptide helix and a short intra-virion domain. In the SARS-CoV-2 virus, the spike is formed by three protomers of 1273 residues, each with two distinct domains separable by enzymatic proteolysis prior to infection. Thus far, enveloped virus surface glycoprotein structures have provided a detailed molecular view of the pre-fusion state, while structures of the post-fusion state have remained incomplete. The determination of the full-length structure of the SARS-CoV-2 spike in the post-fusion state is a landmark in furthering our understanding of the structural pre-requisites for membrane fusion. This perspective analyzes the fusion domain as revealed by the recent structure in the context of conserved sequences across diverse coronaviruses. We highlight the characterization of the membrane-embedded fusion peptide in a helical hairpin topology. This structure is discussed as a re-imagination of the helical hairpin hypothesis for polypeptide insertion into membranes, postulated by Engleman and Steitz over four decades ago.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144486811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxysterols Outcompete Cholesterol Binding to the Membrane-Inserted Cytolysin A Pore Complex. 氧甾醇与胆固醇在膜插入细胞溶解素A孔复合物上的结合。
IF 2.3 4区 生物学
Journal of Membrane Biology Pub Date : 2025-06-09 DOI: 10.1007/s00232-025-00349-0
Samlesh Choudhury, Bharath Desikan, K Ganapathy Ayappa
{"title":"Oxysterols Outcompete Cholesterol Binding to the Membrane-Inserted Cytolysin A Pore Complex.","authors":"Samlesh Choudhury, Bharath Desikan, K Ganapathy Ayappa","doi":"10.1007/s00232-025-00349-0","DOIUrl":"https://doi.org/10.1007/s00232-025-00349-0","url":null,"abstract":"<p><p>Pore-forming toxins (PFTs) belong to a class of proteins expressed by bacteria to initiate infections by unregulated pore formation on the plasma membrane of host cells. Although cholesterol is a key sterol motif that promotes toxin activity, the influence of oxysterols, upregulated in senescent cells or in other inflammatory disorders, on lytic activity has not received much attention. Using all-atom molecular dynamics simulations, we study the changes to the sterol binding landscape of membrane-inserted cytolysin A (ClyA), an <math><mi>α</mi></math> -PFT expressed by E. coli, in the presence of tail-oxidized 25-hydroxycholesterol (25-HC) in a palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC):cholesterol:25-HC (70:20:10) membrane. 25-HC was found to entirely replace previously identified cholesterol binding hotspots [PNAS,115 7323-7330] between the membrane-inserted <math><mi>β</mi></math> -tongue motifs with binding lifetimes on the order of microseconds. Although the overall sterol occupancy is lower for the N-terminal helix motif that forms the lining of the water channel, 25-HC binding is less when compared with cholesterol. The presence of the additional OH group on the 25th carbon enhances interactions with polar residues of the <math><mi>β</mi></math> -tongue, increasing 25-HC binding times by several fold when compared with cholesterol. We discuss the implications of this enhanced oxysterol interaction on pore formation of the <math><mi>α</mi></math> family of toxins such as ClyA, in contrast with the cholesterol-dependent cytolysins, where oxysterols have been shown to be detrimental to pore formation.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144250608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Xenon on the Voltage‒Current Characteristics of Tethered Lipid Bilayers. 氙对系留脂质双分子层电压电流特性的影响。
IF 2.3 4区 生物学
Journal of Membrane Biology Pub Date : 2025-06-01 Epub Date: 2025-04-28 DOI: 10.1007/s00232-025-00346-3
Hadeel Alobeedallah, Bruce Cornell, Hans Coster
{"title":"The Effect of Xenon on the Voltage‒Current Characteristics of Tethered Lipid Bilayers.","authors":"Hadeel Alobeedallah, Bruce Cornell, Hans Coster","doi":"10.1007/s00232-025-00346-3","DOIUrl":"10.1007/s00232-025-00346-3","url":null,"abstract":"<p><p>In this study, we describe the effect of the noble gas, xenon on the electrical properties of tethered lipid bilayer membranes, (tBLMs), including the effect of xenon on the activation energy for electrical conduction through the tBLM. Such studies benefit from the stability of a tethered membrane given the wide range of temperatures that are scanned and the time required for these measurements. The results indicate that xenon increases the activation energy for electrical conduction through bilayers and decreases the average pore size that dominates the electrical conductance of the lipid bilayers at low voltages. Xenon possesses a high affinity for lipid membranes and is a potent general anaesthetic. Its anaesthetic potency is possibly associated with its effects on proteins embedded in the lipid membranes.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":"213-224"},"PeriodicalIF":2.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081542/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144043296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Ion Channels in Alzheimer's Disease Pathophysiology. 离子通道在阿尔茨海默病病理生理中的作用。
IF 2.3 4区 生物学
Journal of Membrane Biology Pub Date : 2025-06-01 Epub Date: 2025-05-01 DOI: 10.1007/s00232-025-00341-8
Ranjit Bhoi, Tuhina Mitra, Kallam Tejaswi, Vaishnav Manoj, Swagata Ghatak
{"title":"Role of Ion Channels in Alzheimer's Disease Pathophysiology.","authors":"Ranjit Bhoi, Tuhina Mitra, Kallam Tejaswi, Vaishnav Manoj, Swagata Ghatak","doi":"10.1007/s00232-025-00341-8","DOIUrl":"10.1007/s00232-025-00341-8","url":null,"abstract":"<p><p>Ion channels play an integral role in the normal functioning of the brain. They regulate neuronal electrical properties like synaptic activity, generation of action potentials, maintenance of resting membrane potential and neuronal plasticity, and modulate the physiology of non-neuronal cells like astrocytes and microglia. Dysregulation of ionic homeostasis and channelopathies are associated with various neurological disorders, including Alzheimer's disease (AD). Several families of ion channels are associated with AD pathophysiology and progression. In this review, we outline the current research centered around ion channel dysregulation during AD and discuss briefly the possibility of using ion channels as therapeutic targets.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":"187-212"},"PeriodicalIF":2.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144045914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信