{"title":"Mycobacterium tuberculosis TtfA is a Highly Stable Membrane-Anchored DNA-Binding Protein.","authors":"Saksham Jain, Akanksha Gajanan Patil, Saniya Patil, Raju Mukherjee, Vikas Jain, Radhakrishnan Mahalakshmi","doi":"10.1007/s00232-025-00352-5","DOIUrl":"https://doi.org/10.1007/s00232-025-00352-5","url":null,"abstract":"<p><p>Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a deadly intracellular pathogen, with a persistent infectivity and high morbidity rate. Mtb has successfully evaded drugs and modern antibiotics, while also developing resistance and adaptability. To obtain newer avenues for therapeutics against Mtb, we proposed to identify and characterize membrane proteins of Mtb. To this end, we report the successful characterization of the locus rv0383c, which codes for a 284-residue membrane-anchored protein. We show that the protein product, named TtfA, possesses an N-terminal transmembrane helix, a low complexity region, an α + β central region, and a C-terminally highly unstructured region. Our studies reveal that the extramembranous domain possesses non-specific DNA-binding ability. Additionally, TtfA folds into a highly stable structure that resists thermal unfolding. TtfA is selectively sensitive to the surrounding pH. The promising outcomes we obtain with TtfA as one of the next-generation antibiotic targets against Mtb can pave the way for characterizing other membrane proteins toward finding long-term cures for this endemic disease.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144499041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introduction to Special Issue on Role of Membranes in the Pore-Formation Mechanism of Pore-Forming Proteins and Toxins.","authors":"Kausik Chattopadhyay","doi":"10.1007/s00232-025-00353-4","DOIUrl":"https://doi.org/10.1007/s00232-025-00353-4","url":null,"abstract":"","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144486810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Resurrection of the Helical Hairpin Hypothesis for Understanding Coronavirus Fusion.","authors":"Sahil Lall, M Vijayasarathy, N V Joshi, P Balaram","doi":"10.1007/s00232-025-00350-7","DOIUrl":"https://doi.org/10.1007/s00232-025-00350-7","url":null,"abstract":"<p><p>Coronaviruses use the spike protein (spike) to bind to target cells, and fuse the viral envelope with a host lipid membrane. Spike is a large trimeric surface glycoprotein, anchored to the viral membrane (envelope) by a single membrane-spanning polypeptide helix and a short intra-virion domain. In the SARS-CoV-2 virus, the spike is formed by three protomers of 1273 residues, each with two distinct domains separable by enzymatic proteolysis prior to infection. Thus far, enveloped virus surface glycoprotein structures have provided a detailed molecular view of the pre-fusion state, while structures of the post-fusion state have remained incomplete. The determination of the full-length structure of the SARS-CoV-2 spike in the post-fusion state is a landmark in furthering our understanding of the structural pre-requisites for membrane fusion. This perspective analyzes the fusion domain as revealed by the recent structure in the context of conserved sequences across diverse coronaviruses. We highlight the characterization of the membrane-embedded fusion peptide in a helical hairpin topology. This structure is discussed as a re-imagination of the helical hairpin hypothesis for polypeptide insertion into membranes, postulated by Engleman and Steitz over four decades ago.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144486811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samlesh Choudhury, Bharath Desikan, K Ganapathy Ayappa
{"title":"Oxysterols Outcompete Cholesterol Binding to the Membrane-Inserted Cytolysin A Pore Complex.","authors":"Samlesh Choudhury, Bharath Desikan, K Ganapathy Ayappa","doi":"10.1007/s00232-025-00349-0","DOIUrl":"https://doi.org/10.1007/s00232-025-00349-0","url":null,"abstract":"<p><p>Pore-forming toxins (PFTs) belong to a class of proteins expressed by bacteria to initiate infections by unregulated pore formation on the plasma membrane of host cells. Although cholesterol is a key sterol motif that promotes toxin activity, the influence of oxysterols, upregulated in senescent cells or in other inflammatory disorders, on lytic activity has not received much attention. Using all-atom molecular dynamics simulations, we study the changes to the sterol binding landscape of membrane-inserted cytolysin A (ClyA), an <math><mi>α</mi></math> -PFT expressed by E. coli, in the presence of tail-oxidized 25-hydroxycholesterol (25-HC) in a palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC):cholesterol:25-HC (70:20:10) membrane. 25-HC was found to entirely replace previously identified cholesterol binding hotspots [PNAS,115 7323-7330] between the membrane-inserted <math><mi>β</mi></math> -tongue motifs with binding lifetimes on the order of microseconds. Although the overall sterol occupancy is lower for the N-terminal helix motif that forms the lining of the water channel, 25-HC binding is less when compared with cholesterol. The presence of the additional OH group on the 25th carbon enhances interactions with polar residues of the <math><mi>β</mi></math> -tongue, increasing 25-HC binding times by several fold when compared with cholesterol. We discuss the implications of this enhanced oxysterol interaction on pore formation of the <math><mi>α</mi></math> family of toxins such as ClyA, in contrast with the cholesterol-dependent cytolysins, where oxysterols have been shown to be detrimental to pore formation.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144250608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Effect of Xenon on the Voltage‒Current Characteristics of Tethered Lipid Bilayers.","authors":"Hadeel Alobeedallah, Bruce Cornell, Hans Coster","doi":"10.1007/s00232-025-00346-3","DOIUrl":"10.1007/s00232-025-00346-3","url":null,"abstract":"<p><p>In this study, we describe the effect of the noble gas, xenon on the electrical properties of tethered lipid bilayer membranes, (tBLMs), including the effect of xenon on the activation energy for electrical conduction through the tBLM. Such studies benefit from the stability of a tethered membrane given the wide range of temperatures that are scanned and the time required for these measurements. The results indicate that xenon increases the activation energy for electrical conduction through bilayers and decreases the average pore size that dominates the electrical conductance of the lipid bilayers at low voltages. Xenon possesses a high affinity for lipid membranes and is a potent general anaesthetic. Its anaesthetic potency is possibly associated with its effects on proteins embedded in the lipid membranes.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":"213-224"},"PeriodicalIF":2.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081542/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144043296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of Ion Channels in Alzheimer's Disease Pathophysiology.","authors":"Ranjit Bhoi, Tuhina Mitra, Kallam Tejaswi, Vaishnav Manoj, Swagata Ghatak","doi":"10.1007/s00232-025-00341-8","DOIUrl":"10.1007/s00232-025-00341-8","url":null,"abstract":"<p><p>Ion channels play an integral role in the normal functioning of the brain. They regulate neuronal electrical properties like synaptic activity, generation of action potentials, maintenance of resting membrane potential and neuronal plasticity, and modulate the physiology of non-neuronal cells like astrocytes and microglia. Dysregulation of ionic homeostasis and channelopathies are associated with various neurological disorders, including Alzheimer's disease (AD). Several families of ion channels are associated with AD pathophysiology and progression. In this review, we outline the current research centered around ion channel dysregulation during AD and discuss briefly the possibility of using ion channels as therapeutic targets.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":"187-212"},"PeriodicalIF":2.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144045914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cholesterol Affects the Pore Formation and the Membrane-Membrane Interaction Induced by an Antimicrobial Peptide, NK-2, in Phospholipid Vesicles.","authors":"Surajit Das, Rajeev Jain, Kalyan Kumar Banerjee, Pabitra Maity, Krishnananda Chattopadhyay, Sanat Karmakar","doi":"10.1007/s00232-025-00347-2","DOIUrl":"10.1007/s00232-025-00347-2","url":null,"abstract":"<p><p>Antimicrobial peptides are part of the innate immune response and show their antimicrobial activity by forming pores, followed by disintegration of the membrane. Cholesterol in the membrane can affect the pore formation process, as cholesterol is known to alter the permeability and elastic properties of the membrane. The present research systematically explores the role of cholesterol in modulating the interaction of the antimicrobial peptide NK-2 with phospholipid membranes, as well as the processes of pore formation induced by NK-2 within the membrane. Large unilamellar vesicles (LUVs) and giant unilamellar vesicles (GUVs) made from DOPC-DOPG and Egg PC with varying cholesterol concentrations have been studied using a variety of experimental techniques. The present study revealed that both the magnitude of zeta potential and surface charge density diminished as cholesterol concentrations increased at an intermediate NK-2 concentration. The proliferation of the size distributions of LUVs containing cholesterol when exposed to NK-2 indicates the occurrence of vesicle aggregation. The phase contrast micrographs of GUVs as well as the calcein release experiments on LUVs show evidence of pores. Notably, the incorporation of cholesterol into the membrane was found to have a significant effect on both the permeability of the membrane and the kinetics of the pore formation process. This biophysical research contributes essential knowledge regarding the role of cholesterol in influencing the antimicrobial efficacy of the membrane.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":"237-252"},"PeriodicalIF":2.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144055243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cesar Millan-Pacheco, Iris N Serratos, Gerardo J Félix-Martínez, Gerardo Blancas-Flores, Alejandra Osorno, Rafael Godínez
{"title":"Cholesterol Concentration in Cell Membranes and its Impact on Receptor-Ligand Interaction: A Computational Study of ATP-Sensitive Potassium Channels and ATP Binding.","authors":"Cesar Millan-Pacheco, Iris N Serratos, Gerardo J Félix-Martínez, Gerardo Blancas-Flores, Alejandra Osorno, Rafael Godínez","doi":"10.1007/s00232-025-00345-4","DOIUrl":"10.1007/s00232-025-00345-4","url":null,"abstract":"<p><p>This work describes a computer study that looks at how different amounts of cholesterol (0%, 25%, and 50%) in cell membranes change the relationship between ATP and the K<sub>ATP</sub> channel. This could explain why pancreatic beta-cells secrete insulin differently. We use computer simulations of molecular dynamics, calculations of binding free energy, and an integrated oscillator model to look at the electrical activity of beta-cells. There is a need for this kind of multiscale approach right now because cholesterol plays a part in metabolic syndrome and early type 2 diabetes. Our results showed that the increase in cholesterol concentration in the cell membrane affects the electrostatic interactions between ATP and the K<sub>ATP</sub> channel, especially with charged residues in the binding site. Cholesterol can influence the properties of a membrane, including its local charge distribution near the channel. This affects the electrostatic environment around the ATP-binding site, increasing the affinity of ATP for the channel as our results indicated from 0 to 25 and 50% cholesterol (- 141 to - 113 kJ/mol, respectively). Simulating this change in the affinity to ATP of the K<sub>ATP</sub> channels in a model of the electrical activity of the pancreatic beta-cell indicates that even a minimal increase could produce hyperinsulism. The study answers an important research question about how the structure of the membrane affects the function of K<sub>ATP</sub> and, in turn, insulin releases a common feature of metabolic syndrome and early stages of type 2 diabetes.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":"225-236"},"PeriodicalIF":2.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081584/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143732847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Functional and Physiological Implications of Oligopeptide Transporters: Potential Targets for Pharmacological Interventions.","authors":"Tapas Roy, Madhu Nath, Nabanita Halder, Rohit Saxena, Thirumurthy Velpandian","doi":"10.1007/s00232-025-00348-1","DOIUrl":"https://doi.org/10.1007/s00232-025-00348-1","url":null,"abstract":"<p><p>Peptide transporters are important plasma membrane proteins that facilitate the cellular uptake of di- and tripeptides in addition to various peptidomimetic drugs. The proton-coupled oligopeptide transporter (POT) family consists of mainly four transporter proteins, which include two H<sup>+</sup> -coupled oligopeptide transporters known as PEPT1 (SLC15A1) and PEPT2 (SLC15A2), along with two peptide/histidine transporters referred to as PHT1 (SLC15A4) and PHT2 (SLC15A3). These transporters play an important role in the drug delivery process in mammalian tissues. They are highly expressed in tissues such as the small intestine, kidney, liver, lung, and eye. PHT1 shows expression in immune cells, especially in B cells and plasmacytoid dendritic cells. The pathophysiological relevance of peptide transporters is emerging to be crucial in various disease conditions, e.g., PEPT1 plays a role in the physiopathology of the gastrointestinal system, particularly in IBD. Upregulated expression of peptide transporters has also been positively related to inflammatory responses. An increasing number of peptide-based drug therapies have been reported to have the potential for development of novel classes of drugs. For example, Carnosine (beta-alanyl-L-histidine) has been demonstrated to act as an antioxidant, antiglycating agent, and neuroprotector. It is transported by PEPT1 and PEPT2, facilitating its protective effects against oxidative stress in neurons and intestinal epithelial cells. Moreover, it has applications in the treatment of multidrug-resistant cancers and has been shown to improve glucose metabolism. This review gives an insight into the functional, physiological and pharmacological importance of proton-coupled oligopeptide transporter.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144182279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}