Dario M Genovese, Facundo L Scarzello, Georgina M Domini, Matías Crosio, Paulo B Miranda, Natalia Wilke
{"title":"Yeast Membrane Hydration is Maintained Under Ethanol Exposure.","authors":"Dario M Genovese, Facundo L Scarzello, Georgina M Domini, Matías Crosio, Paulo B Miranda, Natalia Wilke","doi":"10.1007/s00232-025-00359-y","DOIUrl":null,"url":null,"abstract":"<p><p>Yeasts are able to tolerate different environmental conditions, including stress situations. Given their broad applications in the food industry, their ability to adapt to stressful conditions is an active area of research. Lipid composition of the yeast membrane is affected by environmental stress, and thus, the regulation of the membrane biophysical properties under such conditions may be a key point for yeast adaptation. Although Saccharomyces cerevisiae is highly tolerant to ethanol, its growth is inhibited when this alcohol accumulates in the medium. Therefore, we studied the effect of ethanol on yeast membranes using the fluorescent probe Laurdan, which is sensitive to water dipolar relaxation. Three strains were used: a laboratory strain of S. cerevisiae (BY4741), a mutant that lacks ergosterol (erg6 <math><mi>Δ</mi></math> ), and a commercial baker's yeast. At low ethanol levels, the emission signal of the probe remained constant for all strains. For ethanol proportions higher than 20% (v/v), at which cells are no longer viable, the signal changed abruptly, indicating an increase in solvent dipolar relaxation. We further studied BY4741 yeasts acclimated to high ethanol levels and found that water was more ordered in these membranes than in BY4741 grown in the absence of ethanol. We propose that water structure and membrane hydration are key for yeast viability in the presence of ethanol, and that studying the biophysical properties of membranes could be useful to identify yeast strains with a high tolerance to ethanol.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-025-00359-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Yeasts are able to tolerate different environmental conditions, including stress situations. Given their broad applications in the food industry, their ability to adapt to stressful conditions is an active area of research. Lipid composition of the yeast membrane is affected by environmental stress, and thus, the regulation of the membrane biophysical properties under such conditions may be a key point for yeast adaptation. Although Saccharomyces cerevisiae is highly tolerant to ethanol, its growth is inhibited when this alcohol accumulates in the medium. Therefore, we studied the effect of ethanol on yeast membranes using the fluorescent probe Laurdan, which is sensitive to water dipolar relaxation. Three strains were used: a laboratory strain of S. cerevisiae (BY4741), a mutant that lacks ergosterol (erg6 ), and a commercial baker's yeast. At low ethanol levels, the emission signal of the probe remained constant for all strains. For ethanol proportions higher than 20% (v/v), at which cells are no longer viable, the signal changed abruptly, indicating an increase in solvent dipolar relaxation. We further studied BY4741 yeasts acclimated to high ethanol levels and found that water was more ordered in these membranes than in BY4741 grown in the absence of ethanol. We propose that water structure and membrane hydration are key for yeast viability in the presence of ethanol, and that studying the biophysical properties of membranes could be useful to identify yeast strains with a high tolerance to ethanol.
期刊介绍:
The Journal of Membrane Biology is dedicated to publishing high-quality science related to membrane biology, biochemistry and biophysics. In particular, we welcome work that uses modern experimental or computational methods including but not limited to those with microscopy, diffraction, NMR, computer simulations, or biochemistry aimed at membrane associated or membrane embedded proteins or model membrane systems. These methods might be applied to study topics like membrane protein structure and function, membrane mediated or controlled signaling mechanisms, cell-cell communication via gap junctions, the behavior of proteins and lipids based on monolayer or bilayer systems, or genetic and regulatory mechanisms controlling membrane function.
Research articles, short communications and reviews are all welcome. We also encourage authors to consider publishing ''negative'' results where experiments or simulations were well performed, but resulted in unusual or unexpected outcomes without obvious explanations.
While we welcome connections to clinical studies, submissions that are primarily clinical in nature or that fail to make connections to the basic science issues of membrane structure, chemistry and function, are not appropriate for the journal. In a similar way, studies that are primarily descriptive and narratives of assays in a clinical or population study are best published in other journals. If you are not certain, it is entirely appropriate to write to us to inquire if your study is a good fit for the journal.