{"title":"Stomatin and Stomatin-Like Proteins Can Regulate Transporter Proteins Activity and Has a Role in Cancer Metastasis.","authors":"Abira Dey, Debabani Ganguly","doi":"10.1007/s00232-025-00355-2","DOIUrl":null,"url":null,"abstract":"<p><p>Stomatin, encoded by STOM gene, is an integral membrane protein found in a wide variety of species. Although years have passed since the identification of stomatin, little has been known about the functional insights of stomatin among which stomatin undergoing homo-oligomerization, post and reverse-post modifications are the notable ones. Stomatin downregulation or overexpression is directly connected to its ability to control neutrophil degranulation, modulate activities of transporter proteins, and mediate cancer metastasis. Stomatin shares about 40-80% sequence similarity at its signature SPFH (stomatin, prohibitin, flotillin and Hlfk) domain region with the stomatin-like proteins (SLPs). Although stomatin and SLPs are reported to have various therapeutic activities, still gaps are there regarding their plausible mechanistic insights. Therefore, in future, studies should be aimed toward investigating the possible mechanistic pathways controlled by stomatin and SLPs which can be employed to understand the basis of many therapeutic targets. This review briefs about the different functions of stomatin focusing mainly on the transporter proteins and carcinogenicity modulation by stomatin and SLPs.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-025-00355-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stomatin, encoded by STOM gene, is an integral membrane protein found in a wide variety of species. Although years have passed since the identification of stomatin, little has been known about the functional insights of stomatin among which stomatin undergoing homo-oligomerization, post and reverse-post modifications are the notable ones. Stomatin downregulation or overexpression is directly connected to its ability to control neutrophil degranulation, modulate activities of transporter proteins, and mediate cancer metastasis. Stomatin shares about 40-80% sequence similarity at its signature SPFH (stomatin, prohibitin, flotillin and Hlfk) domain region with the stomatin-like proteins (SLPs). Although stomatin and SLPs are reported to have various therapeutic activities, still gaps are there regarding their plausible mechanistic insights. Therefore, in future, studies should be aimed toward investigating the possible mechanistic pathways controlled by stomatin and SLPs which can be employed to understand the basis of many therapeutic targets. This review briefs about the different functions of stomatin focusing mainly on the transporter proteins and carcinogenicity modulation by stomatin and SLPs.
期刊介绍:
The Journal of Membrane Biology is dedicated to publishing high-quality science related to membrane biology, biochemistry and biophysics. In particular, we welcome work that uses modern experimental or computational methods including but not limited to those with microscopy, diffraction, NMR, computer simulations, or biochemistry aimed at membrane associated or membrane embedded proteins or model membrane systems. These methods might be applied to study topics like membrane protein structure and function, membrane mediated or controlled signaling mechanisms, cell-cell communication via gap junctions, the behavior of proteins and lipids based on monolayer or bilayer systems, or genetic and regulatory mechanisms controlling membrane function.
Research articles, short communications and reviews are all welcome. We also encourage authors to consider publishing ''negative'' results where experiments or simulations were well performed, but resulted in unusual or unexpected outcomes without obvious explanations.
While we welcome connections to clinical studies, submissions that are primarily clinical in nature or that fail to make connections to the basic science issues of membrane structure, chemistry and function, are not appropriate for the journal. In a similar way, studies that are primarily descriptive and narratives of assays in a clinical or population study are best published in other journals. If you are not certain, it is entirely appropriate to write to us to inquire if your study is a good fit for the journal.