{"title":"A mixed single- and dual-frequency quad-constellation GNSS precise point positioning approach on Xiaomi Mi8 smartphones","authors":"Yanjie Li, C. Cai","doi":"10.1017/S0373463322000145","DOIUrl":"https://doi.org/10.1017/S0373463322000145","url":null,"abstract":"Abstract The high-precision global navigation satellite system (GNSS) positioning technique on smartphones has been attracting increasing interest in recent years. However, the low-cost GNSS chip and linearly polarised antenna embedded inside smartphones result in data lack and quality degradation, which hinders the high-precision GNSS positioning on smartphones. In this study, a mixed single- and dual-frequency quad-constellation precise point positioning (MSDQ-PPP) model is proposed to improve the positioning performance on smartphones by taking advantage of all available GNSS observations. Static and kinematic tests were made using a Xiaomi Mi8 smartphone to fully assess the MSDQ-PPP performance with comparisons to single-frequency PPP (SF-PPP) and dual-frequency PPP (DF-PPP) models. The static test results show that the MSDQ-PPP can reach an accuracy level of 0⋅39 m and 0⋅50 m in the horizontal and vertical directions with a convergence time of less than 10 min in most sessions. The MSDQ-PPP improves the positioning accuracy by 53% and 31% over the DF-PPP in the horizontal and vertical directions, respectively. In contrast to the SF-PPP, the positioning accuracy and convergence time improvement can reach 62% and 90% in the horizontal direction, respectively. In the kinematic test, the MSDQ-PPP achieves an accuracy of 0⋅7 m and 1⋅5 m in the horizontal and vertical directions, respectively. The accuracy improvement rates reach 78% and 76% over the DF-PPP, and 13% and 38% over the SF-PPP, respectively. Both static and kinematic MSDQ-PPP tests indicate significantly enhanced positioning performance.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48335913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Logical grouping of data and control functions on the displays of shipboard navigation systems","authors":"V. Vu, M. Lutzhoft, Marius Imset","doi":"10.1017/S0373463322000157","DOIUrl":"https://doi.org/10.1017/S0373463322000157","url":null,"abstract":"Abstract Standards IEC 62288:2014 and MSC.191(79) require information on the displays of shipboard navigation systems to be logically grouped, but only provide limited specification for this ‘logical’ criterion. Meanwhile, complex interfaces and information overload remain as major design issues, being connected to several maritime accidents. To address this matter, a three-phase study was conducted to develop a pattern to organise essential information on Radar and Electronic Chart Display and Information System (ECDIS) displays and their equivalent modules on integrated navigation systems and integrated bridge systems. The first phase involved identifying the information most essential for safe navigation using cognitive task analyses, equipment performance standards and frequency of use. The second phase involved a card-sorting experiment with seafarers (n = 63) to develop an initial grouping pattern for the identified essential information. The third phase involved validating the initial grouping pattern with a new sample of seafarers (n = 35). The result is a pattern to group 48 types of information on shipboard navigation displays into 13 groups. The paper details the selected methods and the findings, and provides implications for future research.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48886124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detection of abnormal ship trajectory based on the complex polygon","authors":"Jinxian Weng, Guorong Li, Yahui Zhao","doi":"10.1017/S0373463322000182","DOIUrl":"https://doi.org/10.1017/S0373463322000182","url":null,"abstract":"Abstract Ship anomaly detection is a vital aspect for monitoring navigational safety in specific water areas. Considering the effect of water channel boundaries, we propose the detection of an abnormal ship trajectory based on the complex polygon (DATCP) method to detect ship anomalies in this study. With the automatic identification systems (AIS) data from the Yangtze River estuary, a case study is created to verify the effectiveness of the proposed DATCP method. The case study results reveal that the proposed DATCP method can provide higher detection accuracy than the conventional A* algorithm. The feature analysis results indicate that ship anomalies are significantly influenced by ship type, time period, weather conditions and ship traffic characteristics.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46005208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seung-gi Gug, June-Ho Yun, Dimantha Harshapriya, Jae-Jin Han
{"title":"A Prefatory Study on the Effects of Alcohol on Ship Manoeuvring, Navigational and Decision-Making Abilities of Navigators","authors":"Seung-gi Gug, June-Ho Yun, Dimantha Harshapriya, Jae-Jin Han","doi":"10.1017/S0373463322000133","DOIUrl":"https://doi.org/10.1017/S0373463322000133","url":null,"abstract":"Abstract Adverse effects of intoxicated driving have been well documented over the years, with clear conclusions. In addition, it is evident that the cognitive and neurological functions and reaction times deteriorate with the consumption of alcohol. Addressing the lack of literature on the subject, this paper focuses on studying the effects of alcohol on manoeuvring, navigational and decision-making ability in ship navigation. Ten participants – five cadets and five experienced navigation officers – volunteered and carried out a standard manoeuvre using a computer-controlled vessel simulator, under three different blood alcohol concentrations (0⋅00%, 0⋅05% and 0⋅08% BAC). Results from the simulations were used to assess the performance and the decision-making ability of participants under the influence of alcohol. In addition, the responses and behaviour of the simulated vessel when the navigators were intoxicated were analysed. Workload experienced by participants during the simulations were also assessed using the NASA Task Load Index. Findings of this preliminary study proved that the ability to make the correct decisions at the right time was drastically deteriorated when the blood alcohol concentration was increased.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44641368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proficiency of allocentric and egocentric wayfinding: a comparison of schoolchildren with young adults and older adults","authors":"Klara Rinne, D. Memmert, O. Bock","doi":"10.1017/S0373463321000965","DOIUrl":"https://doi.org/10.1017/S0373463321000965","url":null,"abstract":"Abstract Wayfinding skills decay in old age, more so for wayfinding in an allocentric than an egocentric reference frame. This study investigates whether wayfinding deficits of schoolchildren mimic those of older adults. Schoolchildren were tested on two wayfinding tasks: one could only be mastered in an allocentric, and the other only in an egocentric reference frame. The results were compared with those from a previous study of young and older adults who had been tested on the same two wayfinding tasks. It was found that wayfinding performance improved somewhat from school age to young adulthood and that this improvement proceeded more or less in parallel for the allocentric and the egocentric tasks. It was further found that wayfinding performance decayed from young to older adulthood and that this decay was more dramatic for the allocentric than for the egocentric task. This pattern of findings does not support the hypothesis that the wayfinding performance of schoolchildren mimics that of older adults.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48331052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Teng Ma, Wenjun Zhang, Ye Li, Yuxin Zhao, Qiang Zhang, Xiaojun Mei, Jiajia Fan
{"title":"Communication-constrained cooperative bathymetric simultaneous localisation and mapping with efficient bathymetric data transmission method","authors":"Teng Ma, Wenjun Zhang, Ye Li, Yuxin Zhao, Qiang Zhang, Xiaojun Mei, Jiajia Fan","doi":"10.1017/S0373463321000904","DOIUrl":"https://doi.org/10.1017/S0373463321000904","url":null,"abstract":"Abstract Bathymetric simultaneous localisation and mapping (SLAM) methods yield accurate navigation results for autonomous underwater vehicles (AUVs) and can construct consistent seabed terrain maps. Multiple independently working vehicles can complete tasks like surveying and mapping efficiently, which means cooperative bathymetric SLAM using multiple AUVs is suitable for large-scale seabed mapping. However, the transmission of bathymetric measurements collected using a multi-beam echo sounder over a low bandwidth, noisy, and unreliable acoustic channel is difficult, making cooperative bathymetric SLAM very challenging. This paper develops a graph-based cooperative bathymetric SLAM system that can compress many bathymetric measurements into small-scale acoustic packets and yield accurate navigation results with a 10% loss of acoustic packets caused by unreliable acoustic communication. According to the simulation conducted using the field data, the new algorithm is shown to be robust and capable of providing accurate location and mapping results over a low bandwidth, noisy, and unreliable acoustic channel.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42789145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hi/H∞-optimised fault detection for a surface vessel integrated navigation system","authors":"Muzhuang Guo, Chen Guo, Chuang Zhang","doi":"10.1017/S0373463322000078","DOIUrl":"https://doi.org/10.1017/S0373463322000078","url":null,"abstract":"Abstract Strapdown inertial navigation systems are widely used in surface ships and warships. Although high-precision optical fibre inertial navigation systems are available, they have high cost and limited practicality. Therefore, they cannot replace the traditional platform inertial navigation systems in all ships. Hence, microelectromechanical system (MEMS)-based inertial sensors are widely used for robust navigation. Accurate and timely identification of sensor faults while ensuring stable navigation is a challenging task. This paper proposes a robust fault detection (FD) approach for a low-cost system that loosely integrates a strapdown inertial navigation system and the global navigation satellite system, where the integrated navigation state estimation provides high-accuracy output. A cubature Hi/H∞-optimised FD filter was designed for a nonlinear discrete time-varying system considering sensitivity to faults and robustness to disturbances. Furthermore, a threshold for FD was derived considering a compromise between the false alarm rate and fault diagnosis accuracy. Finally, the proposed method was validated through simulations using multiple noise distribution sensor data generated by a ship-manoeuvring simulator.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44387588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energy optimised D* AUV path planning with obstacle avoidance and ocean current environment","authors":"Bing Sun, Wei Zhang, Shiqi Li, Xixi Zhu","doi":"10.1017/S0373463322000091","DOIUrl":"https://doi.org/10.1017/S0373463322000091","url":null,"abstract":"Abstract For the path planning of autonomous underwater vehicles (AUVs) in the ocean environment, in addition to the planned path length and safe obstacle avoidance, it is also necessary to pay attention to the impact of ocean currents on the planned path. Therefore, this paper improves the original D* algorithm, and adds the obstacle cost item and the steering angle cost item as constraints on the basis of the original cost function, thus ensuring the navigation safety of the AUV. Considering that ocean currents have a greater impact on the energy consumption of AUVs, this paper establishes a cost model for the impact of ocean currents on AUV energy consumption and applies it to the D* path planning algorithm, so that AUVs can use ocean currents to reduce energy consumption, which can be seen through simulation experiments. The simulation results show that the improvement of the algorithm can plan an optimal energy consumption path.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48973673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NAV volume 75 issue 2 Cover and Front matter","authors":"","doi":"10.1017/s0373463322000212","DOIUrl":"https://doi.org/10.1017/s0373463322000212","url":null,"abstract":"","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42220504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NAV volume 75 issue 2 Cover and Back matter","authors":"","doi":"10.1017/s0373463322000200","DOIUrl":"https://doi.org/10.1017/s0373463322000200","url":null,"abstract":"","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49108616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}