{"title":"小米Mi8智能手机上的单双频四星座GNSS精确点定位方法","authors":"Yanjie Li, C. Cai","doi":"10.1017/S0373463322000145","DOIUrl":null,"url":null,"abstract":"Abstract The high-precision global navigation satellite system (GNSS) positioning technique on smartphones has been attracting increasing interest in recent years. However, the low-cost GNSS chip and linearly polarised antenna embedded inside smartphones result in data lack and quality degradation, which hinders the high-precision GNSS positioning on smartphones. In this study, a mixed single- and dual-frequency quad-constellation precise point positioning (MSDQ-PPP) model is proposed to improve the positioning performance on smartphones by taking advantage of all available GNSS observations. Static and kinematic tests were made using a Xiaomi Mi8 smartphone to fully assess the MSDQ-PPP performance with comparisons to single-frequency PPP (SF-PPP) and dual-frequency PPP (DF-PPP) models. The static test results show that the MSDQ-PPP can reach an accuracy level of 0⋅39 m and 0⋅50 m in the horizontal and vertical directions with a convergence time of less than 10 min in most sessions. The MSDQ-PPP improves the positioning accuracy by 53% and 31% over the DF-PPP in the horizontal and vertical directions, respectively. In contrast to the SF-PPP, the positioning accuracy and convergence time improvement can reach 62% and 90% in the horizontal direction, respectively. In the kinematic test, the MSDQ-PPP achieves an accuracy of 0⋅7 m and 1⋅5 m in the horizontal and vertical directions, respectively. The accuracy improvement rates reach 78% and 76% over the DF-PPP, and 13% and 38% over the SF-PPP, respectively. Both static and kinematic MSDQ-PPP tests indicate significantly enhanced positioning performance.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A mixed single- and dual-frequency quad-constellation GNSS precise point positioning approach on Xiaomi Mi8 smartphones\",\"authors\":\"Yanjie Li, C. Cai\",\"doi\":\"10.1017/S0373463322000145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The high-precision global navigation satellite system (GNSS) positioning technique on smartphones has been attracting increasing interest in recent years. However, the low-cost GNSS chip and linearly polarised antenna embedded inside smartphones result in data lack and quality degradation, which hinders the high-precision GNSS positioning on smartphones. In this study, a mixed single- and dual-frequency quad-constellation precise point positioning (MSDQ-PPP) model is proposed to improve the positioning performance on smartphones by taking advantage of all available GNSS observations. Static and kinematic tests were made using a Xiaomi Mi8 smartphone to fully assess the MSDQ-PPP performance with comparisons to single-frequency PPP (SF-PPP) and dual-frequency PPP (DF-PPP) models. The static test results show that the MSDQ-PPP can reach an accuracy level of 0⋅39 m and 0⋅50 m in the horizontal and vertical directions with a convergence time of less than 10 min in most sessions. The MSDQ-PPP improves the positioning accuracy by 53% and 31% over the DF-PPP in the horizontal and vertical directions, respectively. In contrast to the SF-PPP, the positioning accuracy and convergence time improvement can reach 62% and 90% in the horizontal direction, respectively. In the kinematic test, the MSDQ-PPP achieves an accuracy of 0⋅7 m and 1⋅5 m in the horizontal and vertical directions, respectively. The accuracy improvement rates reach 78% and 76% over the DF-PPP, and 13% and 38% over the SF-PPP, respectively. Both static and kinematic MSDQ-PPP tests indicate significantly enhanced positioning performance.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0373463322000145\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0373463322000145","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A mixed single- and dual-frequency quad-constellation GNSS precise point positioning approach on Xiaomi Mi8 smartphones
Abstract The high-precision global navigation satellite system (GNSS) positioning technique on smartphones has been attracting increasing interest in recent years. However, the low-cost GNSS chip and linearly polarised antenna embedded inside smartphones result in data lack and quality degradation, which hinders the high-precision GNSS positioning on smartphones. In this study, a mixed single- and dual-frequency quad-constellation precise point positioning (MSDQ-PPP) model is proposed to improve the positioning performance on smartphones by taking advantage of all available GNSS observations. Static and kinematic tests were made using a Xiaomi Mi8 smartphone to fully assess the MSDQ-PPP performance with comparisons to single-frequency PPP (SF-PPP) and dual-frequency PPP (DF-PPP) models. The static test results show that the MSDQ-PPP can reach an accuracy level of 0⋅39 m and 0⋅50 m in the horizontal and vertical directions with a convergence time of less than 10 min in most sessions. The MSDQ-PPP improves the positioning accuracy by 53% and 31% over the DF-PPP in the horizontal and vertical directions, respectively. In contrast to the SF-PPP, the positioning accuracy and convergence time improvement can reach 62% and 90% in the horizontal direction, respectively. In the kinematic test, the MSDQ-PPP achieves an accuracy of 0⋅7 m and 1⋅5 m in the horizontal and vertical directions, respectively. The accuracy improvement rates reach 78% and 76% over the DF-PPP, and 13% and 38% over the SF-PPP, respectively. Both static and kinematic MSDQ-PPP tests indicate significantly enhanced positioning performance.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.