Journal of Number Theory最新文献

筛选
英文 中文
Maximally elastic quadratic fields 最大弹性二次场
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2024-09-23 DOI: 10.1016/j.jnt.2024.08.003
Paul Pollack
{"title":"Maximally elastic quadratic fields","authors":"Paul Pollack","doi":"10.1016/j.jnt.2024.08.003","DOIUrl":"10.1016/j.jnt.2024.08.003","url":null,"abstract":"<div><div>Recall that for a domain <em>R</em> where every nonzero nonunit factors into irreducibles, the <span>elasticity</span> of <em>R</em> is defined as<span><span><span><math><mi>sup</mi><mo>⁡</mo><mrow><mo>{</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></mfrac><mo>:</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>,</mo><mrow><mtext> with all </mtext><msub><mrow><mi>π</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>j</mi></mrow></msub><mtext> irreducible</mtext></mrow><mo>}</mo></mrow><mo>.</mo></math></span></span></span> We call a quadratic field <em>K</em> <span>maximally elastic</span> if the ring of integers of <em>K</em> is a UFD and each element of <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>3</mn><mo>,</mo><mo>…</mo><mo>}</mo><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span> appears as an elasticity of infinitely many orders inside <em>K</em>. This corresponds to the orders in <em>K</em> exhibiting, to the extent possible for a quadratic field, maximal variation in terms of the failure of unique factorization. Assuming the Generalized Riemann Hypothesis, we prove that <span><math><mi>K</mi><mo>=</mo><mi>Q</mi><mo>(</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>)</mo></math></span> is universally elastic, and we provide evidence for a conjectured characterization of maximally elastic quadratic fields.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"267 ","pages":"Pages 80-100"},"PeriodicalIF":0.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On dihedral Pólya fields 关于二面波利亚场
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2024-09-23 DOI: 10.1016/j.jnt.2024.08.005
Charles Wend-Waoga Tougma
{"title":"On dihedral Pólya fields","authors":"Charles Wend-Waoga Tougma","doi":"10.1016/j.jnt.2024.08.005","DOIUrl":"10.1016/j.jnt.2024.08.005","url":null,"abstract":"<div><div>A number field is a Pólya field when the module of integer-valued polynomials over its ring of integers has a regular basis. A quartic field is a <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-field when the Galois group of its splitting field is the dihedral group <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> of 8 elements. In this paper, we prove that there are infinitely many <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-Pólya fields with <em>ℓ</em> ramified prime numbers for each <span><math><mi>ℓ</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>}</mo></math></span> and a <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> Pólya field with <span><math><mi>ℓ</mi><mo>=</mo><mn>1</mn></math></span> ramified prime number, is, up to <span><math><mi>Q</mi></math></span>-isomorphism, <span><math><mi>Q</mi><mrow><mo>(</mo><msqrt><mrow><mn>1</mn><mo>+</mo><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow></msqrt><mo>)</mo></mrow></math></span>, <span><math><mi>Q</mi><mrow><mo>(</mo><msqrt><mrow><mo>−</mo><mn>1</mn><mo>+</mo><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow></msqrt><mo>)</mo></mrow></math></span> or a pure field. Consequently, we answer a question raised in <span><span>[29]</span></span> on <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-fields. The same question arises on pure fields. We find an upper bound for such fields. And for any integer <em>ℓ</em> less that this bound, we show that there are infinitely many pure Pólya fields with <em>ℓ</em> ramified prime numbers except when <span><math><mi>ℓ</mi><mo>=</mo><mn>1</mn></math></span> where we proved that there are only 2 fields (and their two conjugate fields)</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"267 ","pages":"Pages 221-250"},"PeriodicalIF":0.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Selmer group and rank of a family of elliptic curves and curves of genus one violating the Hasse principle 论违反哈塞原理的椭圆曲线和一属曲线族的塞尔默群和秩
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2024-09-23 DOI: 10.1016/j.jnt.2024.08.001
Eleni Agathocleous
{"title":"On the Selmer group and rank of a family of elliptic curves and curves of genus one violating the Hasse principle","authors":"Eleni Agathocleous","doi":"10.1016/j.jnt.2024.08.001","DOIUrl":"10.1016/j.jnt.2024.08.001","url":null,"abstract":"<div><div>We study an infinite family of <em>j</em>-invariant zero elliptic curves <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mn>16</mn><mi>D</mi></math></span> and their <em>λ</em>-isogenous curves <span><math><msub><mrow><mi>E</mi></mrow><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mn>27</mn><mo>⋅</mo><mn>16</mn><mi>D</mi></math></span>, where <em>D</em> and <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><mo>−</mo><mn>3</mn><mi>D</mi></math></span> are fundamental discriminants of a specific form, and <em>λ</em> is an isogeny of degree 3. A result of Honda guarantees that for our discriminants <em>D</em>, the quadratic number field <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>=</mo><mi>Q</mi><mo>(</mo><msqrt><mrow><mi>D</mi></mrow></msqrt><mo>)</mo></math></span> always has non-trivial 3-class group. We prove a series of results related to the set of rational points <span><math><msub><mrow><mi>E</mi></mrow><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub><mo>(</mo><mi>Q</mi><mo>)</mo><mo>∖</mo><mi>λ</mi><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>(</mo><mi>Q</mi><mo>)</mo><mo>)</mo></math></span>, and the <span><math><mi>S</mi><mi>L</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi>Z</mi><mo>)</mo></math></span>-equivalence classes of irreducible integral binary cubic forms of discriminant <em>D</em>. By assuming finiteness of the Tate-Shafarevich group, we derive a parity result between the rank of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>D</mi></mrow></msub></math></span> and the rank of its 3-Selmer group, and we establish lower and upper bounds for the rank of our elliptic curves. Finally, we give explicit classes of genus-1 curves that correspond to irreducible integral binary cubic forms of discriminant <span><math><mi>D</mi><mo>=</mo><mn>48035713</mn></math></span>, and we show that every curve in these classes violates the Hasse Principle.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"267 ","pages":"Pages 101-133"},"PeriodicalIF":0.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The characteristic cycle of a non-confluent ℓ-adic GKZ hypergeometric sheaf 非充填ℓ-adic GKZ 超几何层的特征周期
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2024-09-23 DOI: 10.1016/j.jnt.2024.07.014
Peijiang Liu
{"title":"The characteristic cycle of a non-confluent ℓ-adic GKZ hypergeometric sheaf","authors":"Peijiang Liu","doi":"10.1016/j.jnt.2024.07.014","DOIUrl":"10.1016/j.jnt.2024.07.014","url":null,"abstract":"<div><div>An <em>ℓ</em>-adic GKZ hypergeometric sheaf is defined analogously to a GKZ hypergeometric <span><math><mi>D</mi></math></span>-module. We introduce an algorithm of computing the characteristic cycle of an <em>ℓ</em>-adic GKZ hypergeometric sheaf of certain type. Our strategy is to apply a formula of the characteristic cycle of the direct image of an <em>ℓ</em>-adic sheaf. We verify the requirements for the formula to hold by calculating the dimension of the direct image of a certain closed conical subset of cotangent bundle. We also define an <em>ℓ</em>-adic GKZ-type sheaf whose specialization tensored with a constant sheaf is isomorphic to an <em>ℓ</em>-adic non-confluent GKZ hypergeometric sheaf. On the other hand, the topological model of an <em>ℓ</em>-adic GKZ-type sheaf is isomorphic to the image by the de Rham functor of a non-confluent GKZ hypergeometric <span><math><mi>D</mi></math></span>-module whose characteristic cycle has been calculated. This gives an easier way to determine the characteristic cycle of an <em>ℓ</em>-adic non-confluent GKZ hypergeometric sheaf of certain type.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"267 ","pages":"Pages 1-33"},"PeriodicalIF":0.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On PGL2(F7) and PSL2(F7) number fields ramified at a single prime 关于在单素数处夯实的 PGL2(F7) 和 PSL2(F7) 数域
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2024-09-23 DOI: 10.1016/j.jnt.2024.08.006
Takeshi Ogasawara , George J. Schaeffer
{"title":"On PGL2(F7) and PSL2(F7) number fields ramified at a single prime","authors":"Takeshi Ogasawara ,&nbsp;George J. Schaeffer","doi":"10.1016/j.jnt.2024.08.006","DOIUrl":"10.1016/j.jnt.2024.08.006","url":null,"abstract":"<div><div>We present new examples of <span><math><msub><mrow><mi>PGL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>)</mo></math></span> and <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>)</mo></math></span> number fields ramified at a single prime. To find these number fields we employ the following methods: (i) Specializing a modification of Malle's <span><math><msub><mrow><mi>PGL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>)</mo></math></span> polynomial, (ii) Modular method: computation of Katz modular forms of weight one over <span><math><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>7</mn></mrow></msub></math></span> with prime level, and (iii) Searching for polynomials with prescribed ramification.</div><div>Method (i) quickly generates many <span><math><msub><mrow><mi>PGL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>)</mo></math></span> number fields unramified at 7 including those fields ramified at only a single prime. Method (ii) can be used to show the existence of <span><math><msub><mrow><mi>PGL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>)</mo></math></span> or <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>)</mo></math></span> number fields ramified only at primes that divide the level; we can then use method (iii) to find polynomials for those fields in many cases.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"267 ","pages":"Pages 202-220"},"PeriodicalIF":0.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new bound for A(A + A) for large sets 大型集合的 A(A + A) 新界限
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2024-09-23 DOI: 10.1016/j.jnt.2024.08.002
Aliaksei Semchankau
{"title":"A new bound for A(A + A) for large sets","authors":"Aliaksei Semchankau","doi":"10.1016/j.jnt.2024.08.002","DOIUrl":"10.1016/j.jnt.2024.08.002","url":null,"abstract":"<div><div>For a large prime number <em>p</em> and a set <span><math><mi>A</mi><mo>⊂</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> we prove the following:<ul><li><span>(1)</span><span><div>If <span><math><mi>A</mi><mo>(</mo><mi>A</mi><mo>+</mo><mi>A</mi><mo>)</mo></math></span> does not cover all nonzero residues in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, then <span><math><mo>|</mo><mi>A</mi><mo>|</mo><mo>⩽</mo><mi>p</mi><mo>/</mo><mn>8</mn><mo>+</mo><mi>o</mi><mo>(</mo><mi>p</mi><mo>)</mo></math></span>.</div></span></li><li><span>(2)</span><span><div>If <em>A</em> is both sum-free and satisfies <span><math><mi>A</mi><mo>=</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, then <span><math><mo>|</mo><mi>A</mi><mo>|</mo><mo>⩽</mo><mi>p</mi><mo>/</mo><mn>9</mn><mo>+</mo><mi>o</mi><mo>(</mo><mi>p</mi><mo>)</mo></math></span>.</div></span></li><li><span>(3)</span><span><div>If <span><math><mo>|</mo><mi>A</mi><mo>|</mo><mo>≫</mo><mfrac><mrow><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>p</mi></mrow><mrow><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>p</mi></mrow></msqrt></mrow></mfrac><mi>p</mi></math></span>, then <span><math><mo>|</mo><mi>A</mi><mo>+</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>|</mo><mo>⩾</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mi>min</mi><mo>⁡</mo><mo>(</mo><mn>2</mn><msqrt><mrow><mo>|</mo><mi>A</mi><mo>|</mo><mi>p</mi></mrow></msqrt><mo>,</mo><mi>p</mi><mo>)</mo></math></span>.</div></span></li></ul> Here the constants 1/8, 1/9, 2 are the best possible. Proofs make use of <em>wrappers</em>, subsets of a finite abelian group <em>G</em>, which ‘wrap’ popular values in convolutions of dense sets <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>⊆</mo><mi>G</mi></math></span>. These objects carry certain structural features, making them capable of addressing additive-combinatorial and enumerative problems.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"268 ","pages":"Pages 142-162"},"PeriodicalIF":0.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recurrence formulae for spectral determinants 光谱行列式的递推公式
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2024-09-20 DOI: 10.1016/j.jnt.2024.08.004
José Cunha , Pedro Freitas
{"title":"Recurrence formulae for spectral determinants","authors":"José Cunha ,&nbsp;Pedro Freitas","doi":"10.1016/j.jnt.2024.08.004","DOIUrl":"10.1016/j.jnt.2024.08.004","url":null,"abstract":"<div><div>We develop a unified method to study spectral determinants for several different manifolds, including spheres and hemispheres, and projective spaces. This is a direct consequence of an approach based on deriving recursion relations for the corresponding zeta functions, which we are then able to solve explicitly. Apart from new applications such as hemispheres, we also believe that the resulting formulae in the cases for which expressions for the determinant were already known are simpler and easier to compute in general, when compared to those resulting from other approaches.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"267 ","pages":"Pages 134-175"},"PeriodicalIF":0.6,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integral points on moduli schemes 模态方案上的积分点
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2024-08-30 DOI: 10.1016/j.jnt.2024.07.005
Rafael von Känel
{"title":"Integral points on moduli schemes","authors":"Rafael von Känel","doi":"10.1016/j.jnt.2024.07.005","DOIUrl":"10.1016/j.jnt.2024.07.005","url":null,"abstract":"<div><div>The strategy of combining the method of Faltings (Arakelov, Paršin, Szpiro) with modularity and Masser–Wüstholz isogeny estimates allows to explicitly bound the height and the number of the solutions of certain Diophantine equations related to integral points on moduli schemes of abelian varieties. In this paper we survey the development and various applications of this strategy.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"270 ","pages":"Pages 167-237"},"PeriodicalIF":0.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Greedy Sidon sets for linear forms 线性形式的贪婪西顿集
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2024-08-22 DOI: 10.1016/j.jnt.2024.07.010
Yin Choi Cheng
{"title":"Greedy Sidon sets for linear forms","authors":"Yin Choi Cheng","doi":"10.1016/j.jnt.2024.07.010","DOIUrl":"10.1016/j.jnt.2024.07.010","url":null,"abstract":"<div><p>The greedy Sidon set, also known as the Mian-Chowla sequence, is the lexicographically first set in <span><math><mi>N</mi></math></span> that does not contain <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> with <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Its growth and structure have remained enigmatic for 80 years. In this work, we study a generalization from the form <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> to arbitrary linear forms <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>…</mo><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>h</mi></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>; these are called Sidon sets for linear forms. We explicitly describe the elements of the greedy Sidon sets for linear forms when <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> for some <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, and also when <span><math><mi>h</mi><mo>=</mo><mn>2</mn><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>2</mn><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≥</mo><mn>4</mn></math></span>, the “structured” domain. We also contrast the “enigmatic” domain when <span><math><mi>h</mi><mo>=</mo><mn>2</mn><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>2</mn><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>3</mn></math></span> with the “structured” domain, and give upper bounds on the growth rates in both cases.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"266 ","pages":"Pages 225-248"},"PeriodicalIF":0.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001768/pdfft?md5=530dddb3b9f53a0f7a336819d6924b12&pid=1-s2.0-S0022314X24001768-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lower bounds for linear forms in two p-adic logarithms 两个 p-adic 对数中线性形式的下界
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2024-08-21 DOI: 10.1016/j.jnt.2024.07.012
Kwok Chi Chim
{"title":"Lower bounds for linear forms in two p-adic logarithms","authors":"Kwok Chi Chim","doi":"10.1016/j.jnt.2024.07.012","DOIUrl":"10.1016/j.jnt.2024.07.012","url":null,"abstract":"<div><p>We prove explicit lower bounds for linear forms in two <em>p</em>-adic logarithms. More specifically, we establish explicit lower bounds for the <em>p</em>-adic distance between two integral powers of algebraic numbers, that is, <span><math><mo>|</mo><mi>Λ</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mo>|</mo><msubsup><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mo>−</mo><msubsup><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup><msub><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span> (and corresponding explicit upper bounds for <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>Λ</mi><mo>)</mo></math></span>), where <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are numbers that are algebraic over <span><math><mi>Q</mi></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are positive rational integers.</p><p>This work is a <em>p</em>-adic analogue of Gouillon's explicit lower bounds in the complex case. Our upper bound for <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>Λ</mi><mo>)</mo></math></span> has an explicit constant of reasonable size and the dependence of the bound on <em>B</em> (a quantity depending on <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>) is <span><math><mi>log</mi><mo>⁡</mo><mi>B</mi></math></span>, instead of <span><math><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>B</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> as in the work of Bugeaud and Laurent in 1996.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"266 ","pages":"Pages 295-349"},"PeriodicalIF":0.6,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001793/pdfft?md5=ccf251a8e8e82101b493968e4e90bf5e&pid=1-s2.0-S0022314X24001793-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信