Journal of Number Theory最新文献

筛选
英文 中文
Non-vanishing of multiple zeta values for higher genus curves over finite fields 有限域上高属曲线的多重zeta值不求和
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2024-05-17 DOI: 10.1016/j.jnt.2024.04.014
Daichi Matsuzuki
{"title":"Non-vanishing of multiple zeta values for higher genus curves over finite fields","authors":"Daichi Matsuzuki","doi":"10.1016/j.jnt.2024.04.014","DOIUrl":"https://doi.org/10.1016/j.jnt.2024.04.014","url":null,"abstract":"<div><p>In this paper, we show that ∞-adic multiple zeta values associated to the function field of an algebraic curve of higher genus over a finite field are not zero, under certain assumption on the gap sequence associated to the rational point ∞ on the given curve. Using arguments and results of Sheats and Thakur for the case of the projective line, we calculate the absolute values of power sums in the series defining multiple zeta values, and show that the calculation implies the non-vanishing result.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"262 ","pages":"Pages 607-617"},"PeriodicalIF":0.7,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141084645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finiteness of analytic cohomology of Lubin-Tate (φL,ΓL)-modules 卢宾-塔特 (φ,Γ )- 模块的解析同调的有限性
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2024-05-17 DOI: 10.1016/j.jnt.2024.04.008
Rustam Steingart
{"title":"Finiteness of analytic cohomology of Lubin-Tate (φL,ΓL)-modules","authors":"Rustam Steingart","doi":"10.1016/j.jnt.2024.04.008","DOIUrl":"10.1016/j.jnt.2024.04.008","url":null,"abstract":"<div><p>We prove finiteness and base change properties for analytic cohomology of families of <em>L</em>-analytic <span><math><mo>(</mo><msub><mrow><mi>φ</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>)</mo></math></span>-modules parametrised by affinoid algebras in the sense of Tate. For technical reasons we work over a field <em>K</em> containing a period of the Lubin-Tate group, which allows us to describe analytic cohomology in terms of an explicit generalised Herr complex.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"263 ","pages":"Pages 24-78"},"PeriodicalIF":0.7,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001069/pdfft?md5=5b405688ee583a7ed6173f26b09c8258&pid=1-s2.0-S0022314X24001069-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141046505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rationality of four-valued families of Weil sums of binomials 二项式魏尔和的四值族的合理性
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2024-05-17 DOI: 10.1016/j.jnt.2024.04.012
Daniel J. Katz , Allison E. Wong
{"title":"Rationality of four-valued families of Weil sums of binomials","authors":"Daniel J. Katz ,&nbsp;Allison E. Wong","doi":"10.1016/j.jnt.2024.04.012","DOIUrl":"https://doi.org/10.1016/j.jnt.2024.04.012","url":null,"abstract":"<div><p>We investigate the rationality of Weil sums of binomials of the form <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>u</mi></mrow><mrow><mi>K</mi><mo>,</mo><mi>s</mi></mrow></msubsup><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>x</mi><mo>∈</mo><mi>K</mi></mrow></msub><mi>ψ</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>−</mo><mi>u</mi><mi>x</mi><mo>)</mo></math></span>, where <em>K</em> is a finite field whose canonical additive character is <em>ψ</em>, and where <em>u</em> is an element of <span><math><msup><mrow><mi>K</mi></mrow><mrow><mo>×</mo></mrow></msup></math></span> and <em>s</em> is a positive integer relatively prime to <span><math><mo>|</mo><msup><mrow><mi>K</mi></mrow><mrow><mo>×</mo></mrow></msup><mo>|</mo></math></span>, so that <span><math><mi>x</mi><mo>↦</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> is a permutation of <em>K</em>. The Weil spectrum for <em>K</em> and <em>s</em>, which is the family of values <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>u</mi></mrow><mrow><mi>K</mi><mo>,</mo><mi>s</mi></mrow></msubsup></math></span> as <em>u</em> runs through <span><math><msup><mrow><mi>K</mi></mrow><mrow><mo>×</mo></mrow></msup></math></span>, is of interest in arithmetic geometry and in several information-theoretic applications. The Weil spectrum always contains at least three distinct values if <em>s</em> is nondegenerate (i.e., if <em>s</em> is not a power of <em>p</em> modulo <span><math><mo>|</mo><msup><mrow><mi>K</mi></mrow><mrow><mo>×</mo></mrow></msup><mo>|</mo></math></span>, where <em>p</em> is the characteristic of <em>K</em>). It is already known that if the Weil spectrum contains precisely three distinct values, then they must all be rational integers. We show that if the Weil spectrum contains precisely four distinct values, then they must all be rational integers, with the sole exception of the case where <span><math><mo>|</mo><mi>K</mi><mo>|</mo><mo>=</mo><mn>5</mn></math></span> and <span><math><mi>s</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"262 ","pages":"Pages 541-576"},"PeriodicalIF":0.7,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001124/pdfft?md5=3a77361364a5e2eaf760bf070ef372d8&pid=1-s2.0-S0022314X24001124-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141077970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global liftings between inner forms of GSp(4) GSp(4) 内形式之间的全局升维
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2024-05-17 DOI: 10.1016/j.jnt.2024.04.010
Mirko Rösner, Rainer Weissauer
{"title":"Global liftings between inner forms of GSp(4)","authors":"Mirko Rösner,&nbsp;Rainer Weissauer","doi":"10.1016/j.jnt.2024.04.010","DOIUrl":"https://doi.org/10.1016/j.jnt.2024.04.010","url":null,"abstract":"<div><p>For reductive groups <em>G</em> over a number field we discuss automorphic liftings of cohomological cuspidal irreducible automorphic representations <em>π</em> of <span><math><mi>G</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> to irreducible cohomological automorphic representations of <span><math><mi>H</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> for the quasi-split inner form <em>H</em> of <em>G</em>, and other inner forms as well. We show the existence of nontrivial weak global cohomological liftings in many cases, in particular for the case where <em>G</em> is anisotropic at the archimedean places. A priori, for these weak liftings we do not give a description of the precise nature of the corresponding local liftings at the ramified places, nor do we characterize the image of the lifting. For inner forms of the group <span><math><mi>H</mi><mo>=</mo><mrow><mi>GSp</mi></mrow><mo>(</mo><mn>4</mn><mo>)</mo></math></span> however we address these finer questions. Especially, we prove the recent conjectures of Ibukiyama and Kitayama on paramodular newforms of square-free level.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"263 ","pages":"Pages 79-138"},"PeriodicalIF":0.7,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001173/pdfft?md5=e1a88da9503c55ed7cf8a41d86d6117b&pid=1-s2.0-S0022314X24001173-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compactifications of Iwahori-level Hilbert modular varieties 岩堀级希尔伯特模块变体的紧凑性
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2024-05-17 DOI: 10.1016/j.jnt.2024.04.009
Fred Diamond
{"title":"Compactifications of Iwahori-level Hilbert modular varieties","authors":"Fred Diamond","doi":"10.1016/j.jnt.2024.04.009","DOIUrl":"https://doi.org/10.1016/j.jnt.2024.04.009","url":null,"abstract":"<div><p>We study minimal and toroidal compactifications of <em>p</em>-integral models of Hilbert modular varieties. We review the theory in the setting of Iwahori level at primes over <em>p</em>, and extend it to certain finer level structures. We also prove extensions to compactifications of recent results on Iwahori-level Kodaira–Spencer isomorphisms and cohomological vanishing for degeneracy maps. Finally we apply the theory to study <em>q</em>-expansions of Hilbert modular forms, especially the effect of Hecke operators at primes over <em>p</em> over general base rings.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"263 ","pages":"Pages 255-296"},"PeriodicalIF":0.7,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001161/pdfft?md5=b677fd9a2dc72751b9574178e03a6acc&pid=1-s2.0-S0022314X24001161-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141249922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of quadratic ε−CNS polynomials 二次ε-CNS 多项式的特征
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2024-05-16 DOI: 10.1016/j.jnt.2024.04.007
Borka Jadrijević , Kristina Miletić
{"title":"Characterization of quadratic ε−CNS polynomials","authors":"Borka Jadrijević ,&nbsp;Kristina Miletić","doi":"10.1016/j.jnt.2024.04.007","DOIUrl":"10.1016/j.jnt.2024.04.007","url":null,"abstract":"<div><p>In this paper, we give characterization of quadratic <em>ε</em>-canonical number system (<em>ε</em>−CNS) polynomials for all values <span><math><mi>ε</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. Our characterization provides a unified view of the well-known characterizations of the classical quadratic CNS polynomials (<span><math><mi>ε</mi><mo>=</mo><mn>0</mn></math></span>) and quadratic SCNS polynomials (<span><math><mi>ε</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>). This result is a consequence of our new characterization results of <em>ε</em>-shift radix systems (<em>ε</em>−SRS) in the two-dimensional case and their relation to quadratic <em>ε</em>−CNS polynomials.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"262 ","pages":"Pages 579-606"},"PeriodicalIF":0.7,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141044433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Lehmer-type lower bound for the canonical height on elliptic curves over function fields 函数域上椭圆曲线典型高度的雷默型下界
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2024-05-16 DOI: 10.1016/j.jnt.2024.04.004
Joseph H. Silverman
{"title":"A Lehmer-type lower bound for the canonical height on elliptic curves over function fields","authors":"Joseph H. Silverman","doi":"10.1016/j.jnt.2024.04.004","DOIUrl":"https://doi.org/10.1016/j.jnt.2024.04.004","url":null,"abstract":"<div><p>Let <span><math><mi>F</mi></math></span> be the function field of a curve over an algebraically closed field with <span><math><mi>char</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>≠</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span>, and let <span><math><mi>E</mi><mo>/</mo><mi>F</mi></math></span> be a non-isotrivial elliptic curve. Then for all finite extensions <span><math><mi>K</mi><mo>/</mo><mi>F</mi></math></span> and all non-torsion points <span><math><mi>P</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span>, the <span><math><mi>F</mi></math></span>-normalized canonical height of <em>P</em> is bounded below by<span><span><span><math><msub><mrow><mover><mrow><mi>h</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo><mo>≥</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>10500</mn><mo>⋅</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>F</mi></mrow></msub><msup><mrow><mo>(</mo><msub><mrow><mi>j</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>⋅</mo><msup><mrow><mo>[</mo><mi>K</mi><mo>:</mo><mi>F</mi><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>.</mo></math></span></span></span></p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"262 ","pages":"Pages 506-538"},"PeriodicalIF":0.7,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141073462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theta cycles and the Beilinson–Bloch–Kato conjectures Theta 循环和贝林松-布洛赫-卡托猜想
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2024-05-06 DOI: 10.1016/j.jnt.2024.04.001
Daniel Disegni
{"title":"Theta cycles and the Beilinson–Bloch–Kato conjectures","authors":"Daniel Disegni","doi":"10.1016/j.jnt.2024.04.001","DOIUrl":"https://doi.org/10.1016/j.jnt.2024.04.001","url":null,"abstract":"We introduce ‘canonical’ classes in the Selmer groups of certain Galois representations with a conjugate-symplectic symmetry. They are images of special cycles in unitary Shimura varieties, and defined uniquely up to a scalar. The construction is a slight refinement of one of Y. Liu, based on the conjectural modularity of Kudla's theta series of special cycles. For 2-dimensional representations, Theta cycles are (the Selmer images of) Heegner points. In general, they conjecturally exhibit an analogous strong relation with the Beilinson–Bloch–Kato conjectures in rank 1, for which we gather the available evidence.","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"31 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140941903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hecke theory for SO+(2,n + 2) SO+(2,n + 2) 的赫克理论
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2024-04-24 DOI: 10.1016/j.jnt.2024.03.003
Aloys Krieg , Hannah Römer , Felix Schaps
{"title":"Hecke theory for SO+(2,n + 2)","authors":"Aloys Krieg ,&nbsp;Hannah Römer ,&nbsp;Felix Schaps","doi":"10.1016/j.jnt.2024.03.003","DOIUrl":"10.1016/j.jnt.2024.03.003","url":null,"abstract":"<div><p>We describe the foundations of a Hecke theory for the orthogonal group <span><math><mi>S</mi><msup><mrow><mi>O</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span>. In particular we consider the Hermitian modular group of degree 2 as a special example of <span><math><mi>S</mi><msup><mrow><mi>O</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>)</mo></math></span>. As an application we show that the attached Maaß space is invariant under Hecke operators. This implies that the Eisenstein series belongs to the Maaß space. If the underlying lattice is even and unimodular, our approach allows us to reprove the explicit formula of its Fourier coefficients.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"262 ","pages":"Pages 454-470"},"PeriodicalIF":0.7,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24000805/pdfft?md5=f514dbc566b927d06d054aab5bbe88a7&pid=1-s2.0-S0022314X24000805-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140776623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Sparse sets that satisfy the prime number theorem” [J. Number Theory 259 (2024) 93–111] 满足素数定理的稀疏集》更正 [J. Number Theory 259 (2024) 93-111]
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2024-04-24 DOI: 10.1016/j.jnt.2024.03.021
Olivier Bordellès , Randell Heyman , Dion Nikolic
{"title":"Corrigendum to “Sparse sets that satisfy the prime number theorem” [J. Number Theory 259 (2024) 93–111]","authors":"Olivier Bordellès ,&nbsp;Randell Heyman ,&nbsp;Dion Nikolic","doi":"10.1016/j.jnt.2024.03.021","DOIUrl":"https://doi.org/10.1016/j.jnt.2024.03.021","url":null,"abstract":"","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"262 ","pages":"Page 44"},"PeriodicalIF":0.7,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24000969/pdfft?md5=e298404cfe22a3c89bf065e9074ac862&pid=1-s2.0-S0022314X24000969-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140644601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信