具有潜在超奇异约简性的Kodaira型椭圆曲线

IF 0.6 3区 数学 Q3 MATHEMATICS
Haiyang Wang
{"title":"具有潜在超奇异约简性的Kodaira型椭圆曲线","authors":"Haiyang Wang","doi":"10.1016/j.jnt.2025.01.008","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> be a Henselian discrete valuation domain with field of fractions <em>K</em>. Assume that <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> has algebraically closed residue field <em>k</em>. Let <span><math><mi>E</mi><mo>/</mo><mi>K</mi></math></span> be an elliptic curve with additive reduction. The semi-stable reduction theorem asserts that there exists a minimal extension <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span> such that the base change <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>/</mo><mi>L</mi></math></span> has semi-stable reduction.</div><div>It is natural to wonder whether specific properties of the semi-stable reduction and of the extension <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span> impose restrictions on what types of Kodaira type the special fiber of <span><math><mi>E</mi><mo>/</mo><mi>K</mi></math></span> may have. In this paper we study the restrictions imposed on the reduction type when the extension <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span> is wildly ramified of degree 2, and the curve <span><math><mi>E</mi><mo>/</mo><mi>K</mi></math></span> has potentially good supersingular reduction. We also analyze the possible reduction types of two isogenous elliptic curves with these properties.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"271 ","pages":"Pages 283-307"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Kodaira types of elliptic curves with potentially good supersingular reduction\",\"authors\":\"Haiyang Wang\",\"doi\":\"10.1016/j.jnt.2025.01.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> be a Henselian discrete valuation domain with field of fractions <em>K</em>. Assume that <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> has algebraically closed residue field <em>k</em>. Let <span><math><mi>E</mi><mo>/</mo><mi>K</mi></math></span> be an elliptic curve with additive reduction. The semi-stable reduction theorem asserts that there exists a minimal extension <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span> such that the base change <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>/</mo><mi>L</mi></math></span> has semi-stable reduction.</div><div>It is natural to wonder whether specific properties of the semi-stable reduction and of the extension <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span> impose restrictions on what types of Kodaira type the special fiber of <span><math><mi>E</mi><mo>/</mo><mi>K</mi></math></span> may have. In this paper we study the restrictions imposed on the reduction type when the extension <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span> is wildly ramified of degree 2, and the curve <span><math><mi>E</mi><mo>/</mo><mi>K</mi></math></span> has potentially good supersingular reduction. We also analyze the possible reduction types of two isogenous elliptic curves with these properties.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"271 \",\"pages\":\"Pages 283-307\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X2500023X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X2500023X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设OK为具有分数域k的Henselian离散值域,设OK具有代数闭残域k,设E/ k为具有加性约简的椭圆曲线。半稳定约简定理证明存在一个极小的扩展L/K,使得基变EL/L具有半稳定约简。人们很自然地想知道,半稳定还原和延伸L/K的特定性质是否限制了E/K特殊纤维可能具有的Kodaira类型。本文研究了当扩展L/K为2次广分枝时对约简类型的限制,以及E/K曲线具有潜在的良好超奇异约简。我们还分析了具有这些性质的两条等均椭圆曲线可能的约化类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Kodaira types of elliptic curves with potentially good supersingular reduction
Let OK be a Henselian discrete valuation domain with field of fractions K. Assume that OK has algebraically closed residue field k. Let E/K be an elliptic curve with additive reduction. The semi-stable reduction theorem asserts that there exists a minimal extension L/K such that the base change EL/L has semi-stable reduction.
It is natural to wonder whether specific properties of the semi-stable reduction and of the extension L/K impose restrictions on what types of Kodaira type the special fiber of E/K may have. In this paper we study the restrictions imposed on the reduction type when the extension L/K is wildly ramified of degree 2, and the curve E/K has potentially good supersingular reduction. We also analyze the possible reduction types of two isogenous elliptic curves with these properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信