Journal of Number Theory最新文献

筛选
英文 中文
Corrigendum to: “A Lehmer-type lower bound for the canonical height on elliptic curves over function fields” [J. Number Theory 262 (2024) 506–538] “函数场上椭圆曲线正则高度的lehmer型下界”的更正[J]。数论262 (2024)506-538]
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-07-25 DOI: 10.1016/j.jnt.2025.06.016
Joseph H. Silverman
{"title":"Corrigendum to: “A Lehmer-type lower bound for the canonical height on elliptic curves over function fields” [J. Number Theory 262 (2024) 506–538]","authors":"Joseph H. Silverman","doi":"10.1016/j.jnt.2025.06.016","DOIUrl":"10.1016/j.jnt.2025.06.016","url":null,"abstract":"<div><div>We correct a constant appearing in an inequality, and explain how the change propagates through the paper to change various other constants. The revised result is the lower bound<span><span><span><math><msub><mrow><mover><mrow><mi>h</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo><mo>≥</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>18000</mn><mo>⋅</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>F</mi></mrow></msub><msup><mrow><mo>(</mo><msub><mrow><mi>j</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>⋅</mo><msup><mrow><mo>[</mo><mi>K</mi><mo>:</mo><mi>F</mi><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>,</mo></math></span></span></span> in which the fraction <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>18000</mn></mrow></mfrac></math></span> replaces the constant <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>10500</mn></mrow></mfrac></math></span> appearing in the original publication, and with the added requirement that <span><math><mo>[</mo><mi>K</mi><mo>:</mo><mi>F</mi><mo>]</mo><mo>≥</mo><mn>6</mn></math></span>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 267-269"},"PeriodicalIF":0.6,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144702882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poissonian pair correlation of linear generalized monomials over primes 素数上线性广义单项式的泊松对相关
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-07-22 DOI: 10.1016/j.jnt.2025.06.012
C.G. Karthick Babu , E. Malavika , G.K. Viswanadham
{"title":"Poissonian pair correlation of linear generalized monomials over primes","authors":"C.G. Karthick Babu ,&nbsp;E. Malavika ,&nbsp;G.K. Viswanadham","doi":"10.1016/j.jnt.2025.06.012","DOIUrl":"10.1016/j.jnt.2025.06.012","url":null,"abstract":"<div><div>We consider the Poissonian pair correlation of the sequence <span><math><msub><mrow><mo>(</mo><mo>⌊</mo><mi>p</mi><mi>α</mi><mo>⌋</mo><mo>)</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span> generated by the generalized polynomial <span><math><mo>⌊</mo><mi>α</mi><mi>X</mi><mo>⌋</mo></math></span>, where <em>p</em> runs over the sequence of primes and <em>α</em> is an irrational number. We show that for any irrational <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> of finite type, the sequence <span><math><msub><mrow><mo>(</mo><mo>⌊</mo><mi>p</mi><mi>α</mi><mo>⌋</mo><mo>)</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span> is not metric Poissonian. This is done by considering an additive problem similar to the even Goldbach conjecture. We also give upper and lower bounds for the additive energy of the sequence <span><math><msub><mrow><mo>(</mo><mo>⌊</mo><mi>p</mi><mi>α</mi><mo>⌋</mo><mo>)</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 270-293"},"PeriodicalIF":0.6,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144702881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bol's identity for skew-holomorphic Jacobi forms 斜全纯Jacobi形式的Bol恒等式
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-07-21 DOI: 10.1016/j.jnt.2025.06.015
Youngmin Lee , Subong Lim
{"title":"Bol's identity for skew-holomorphic Jacobi forms","authors":"Youngmin Lee ,&nbsp;Subong Lim","doi":"10.1016/j.jnt.2025.06.015","DOIUrl":"10.1016/j.jnt.2025.06.015","url":null,"abstract":"<div><div>In this paper, we study an analogy of the heat operator to the skew-holomorphic Jacobi form case. Using this, we prove Bol's identity for skew-holomorphic Jacobi forms on <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>×</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>j</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span>. This induces a map from skew-holomorphic Jacobi forms of weight <span><math><mo>−</mo><mi>k</mi><mo>+</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mi>j</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> to those of weight <span><math><mi>k</mi><mo>+</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mi>j</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mn>2</mn></math></span>. When <span><math><mi>n</mi><mo>=</mo><mi>j</mi><mo>=</mo><mn>1</mn></math></span>, this map extends to skew-holomorphic harmonic Maass-Jacobi forms. In this case, we prove Zagier-type duality between Fourier coefficients of harmonic Maass-Jacobi forms and Fourier coefficients of weakly skew-holomorphic Jacobi forms.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 216-237"},"PeriodicalIF":0.6,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144702916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards the Fontaine-Mazur conjecture for biquadratic extensions: An example 关于双二次扩展的Fontaine-Mazur猜想:一个例子
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-07-21 DOI: 10.1016/j.jnt.2025.06.005
Ramla Abdellatif , Supriya Pisolkar
{"title":"Towards the Fontaine-Mazur conjecture for biquadratic extensions: An example","authors":"Ramla Abdellatif ,&nbsp;Supriya Pisolkar","doi":"10.1016/j.jnt.2025.06.005","DOIUrl":"10.1016/j.jnt.2025.06.005","url":null,"abstract":"<div><div>We prove that the Galois group of the maximal everywhere unramified pro-3-extension <em>L</em> of the biquadratic field <span><math><mi>K</mi><mo>:</mo><mo>=</mo><mi>Q</mi><mo>(</mo><msqrt><mrow><mo>−</mo><mn>26</mn></mrow></msqrt><mo>,</mo><msqrt><mrow><mn>229</mn></mrow></msqrt><mo>)</mo></math></span> has no infinite <em>p</em>-adic analytic pro-3 quotient. This answers negatively a question asked by Boston in his fundamental 1992 paper <span><span>[4]</span></span>, in which it was observed that the Galois group of <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span>, if admitting such a quotient, may provide a counter example to the Fontaine-Mazur conjecture 1.1.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 457-478"},"PeriodicalIF":0.7,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144724477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Bass' conjecture of the small Davenport constant 关于Bass关于小达文波特常数的猜想
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-07-21 DOI: 10.1016/j.jnt.2025.06.009
Guoqing Wang, Yang Zhao
{"title":"On Bass' conjecture of the small Davenport constant","authors":"Guoqing Wang,&nbsp;Yang Zhao","doi":"10.1016/j.jnt.2025.06.009","DOIUrl":"10.1016/j.jnt.2025.06.009","url":null,"abstract":"<div><div>Let <em>G</em> be a finite group. The small Davenport constant <span><math><mi>d</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em> is the maximal integer <em>ℓ</em> such that there is a sequence of length <em>ℓ</em> over <em>G</em> which has no nonempty product-one subsequence. In 2007, Bass conjectured that <span><math><mi>d</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>−</mo><mn>2</mn></math></span>, where <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>=</mo><mo>〈</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>|</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>y</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>〉</mo></math></span>, and <em>s</em> has order <em>m</em> modulo <em>n</em>. In this paper, we confirm the conjecture for any group <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> with additional conditions that <em>s</em> has order <em>m</em> modulo <em>q</em>, for every prime divisor <em>q</em> of <em>n</em>. Moreover, we solve the associated inverse problem characterizing the structure of any product-one free sequence with extremal length <span><math><mi>d</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>)</mo></math></span>. Our results generalize some obtained theorems on this problem.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 512-526"},"PeriodicalIF":0.7,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144724712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The generalized linear period and the Shalika period over a division algebra 除法代数上的广义线性周期和Shalika周期
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-07-21 DOI: 10.1016/j.jnt.2025.06.013
Hengfei Lu
{"title":"The generalized linear period and the Shalika period over a division algebra","authors":"Hengfei Lu","doi":"10.1016/j.jnt.2025.06.013","DOIUrl":"10.1016/j.jnt.2025.06.013","url":null,"abstract":"<div><div>Let <em>F</em> be a local field of characteristic zero. Let <em>D</em> be a division algebra over <em>F</em> of degree <em>d</em>. Let <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msub><mo>=</mo><msub><mrow><mi>GL</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo><mo>×</mo><msub><mrow><mi>GL</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> with <span><math><mi>p</mi><mo>+</mo><mi>q</mi><mo>=</mo><mi>n</mi></math></span>. Let <em>π</em> be an irreducible smooth admissible representation of <em>G</em> and let <em>χ</em> be any character of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msub></math></span>. In this short paper, we investigate the relation between the Shalika period of <em>π</em> and the generalized linear period with respect to <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 238-255"},"PeriodicalIF":0.6,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144702879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simple proof of a reverse Minkowski theorem for integral lattices 积分格的反闵可夫斯基定理的一个简单证明
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-07-21 DOI: 10.1016/j.jnt.2025.06.014
Oded Regev , Noah Stephens-Davidowitz
{"title":"A simple proof of a reverse Minkowski theorem for integral lattices","authors":"Oded Regev ,&nbsp;Noah Stephens-Davidowitz","doi":"10.1016/j.jnt.2025.06.014","DOIUrl":"10.1016/j.jnt.2025.06.014","url":null,"abstract":"<div><div>We prove that for any integral lattice <span><math><mi>L</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> (that is, a lattice <span><math><mi>L</mi></math></span> such that the inner product <span><math><mo>〈</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>〉</mo></math></span> is an integer for all <span><math><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>L</mi></math></span>) and any positive integer <em>k</em>,<span><span><span><math><mo>|</mo><mo>{</mo><mi>y</mi><mo>∈</mo><mi>L</mi><mspace></mspace><mo>:</mo><mspace></mspace><msup><mrow><mo>‖</mo><mi>y</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>k</mi><mo>}</mo><mo>|</mo><mo>≤</mo><mn>2</mn><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>+</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mn>2</mn><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mspace></mspace><mo>,</mo></math></span></span></span> giving a nearly tight reverse Minkowski theorem for integral lattices.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 256-266"},"PeriodicalIF":0.6,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144702880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remarks on p-primary torsion of the Brauer group 关于Brauer群的p-初级扭转的注释
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-07-21 DOI: 10.1016/j.jnt.2025.06.003
Yuan Yang
{"title":"Remarks on p-primary torsion of the Brauer group","authors":"Yuan Yang","doi":"10.1016/j.jnt.2025.06.003","DOIUrl":"10.1016/j.jnt.2025.06.003","url":null,"abstract":"<div><div>For a smooth and proper variety <em>X</em> over an algebraically closed field <em>k</em> of characteristic <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span>, the group <span><math><mrow><mi>Br</mi></mrow><mo>(</mo><mi>X</mi><mo>)</mo><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>]</mo></math></span> is a direct sum of finitely many copies of <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>/</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>(</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>]</mo></math></span>, an abelian group of finite exponent. The latter is an extension of a finite group <em>J</em> by the group of <em>k</em>-points of a connected commutative unipotent algebraic group <em>U</em>. In this paper we show that (1) if <em>X</em> is ordinary, then <span><math><mi>U</mi><mo>=</mo><mn>0</mn></math></span>; (2) if <em>X</em> is a surface, then <em>J</em> is the Pontryagin dual of <span><math><mrow><mi>NS</mi></mrow><mo>(</mo><mi>X</mi><mo>)</mo><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>]</mo></math></span>; (3) if <em>X</em> is an abelian variety, then <span><math><mi>J</mi><mo>=</mo><mn>0</mn></math></span>. Using Crew's formula and Ekedahl's inequality, we compute the dimension of <em>U</em> for surfaces and for abelian 3-folds. We show that, if <em>X</em> is ordinary, then the unipotent subgroup of <span><math><mrow><mi>Br</mi></mrow><mo>(</mo><mi>X</mi><mo>×</mo><mi>Y</mi><mo>)</mo></math></span> is isomorphic to the unipotent subgroup of <span><math><mrow><mi>Br</mi></mrow><mo>(</mo><mi>Y</mi><mo>)</mo></math></span>. Generalizing a result of Ogus, we give a criterion for the injectivity of the canonical map from flat to crystalline cohomology in degree 2.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 184-215"},"PeriodicalIF":0.6,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144687069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic variation of elementary abelian p-extensions over P1 P1上初等阿贝尔p扩展的渐近变分
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-07-21 DOI: 10.1016/j.jnt.2025.06.004
Hui June Zhu
{"title":"Asymptotic variation of elementary abelian p-extensions over P1","authors":"Hui June Zhu","doi":"10.1016/j.jnt.2025.06.004","DOIUrl":"10.1016/j.jnt.2025.06.004","url":null,"abstract":"<div><div>Let <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> denote the coefficient space of all degree-<em>d</em> polynomials <em>f</em> in one variable for some <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>. For any <span><math><mover><mrow><mi>f</mi></mrow><mo>‾</mo></mover><mo>∈</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>(</mo><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span>, a rank-<em>ℓ</em> Artin-Schreier curve <span><math><msub><mrow><mi>X</mi></mrow><mrow><mover><mrow><mi>f</mi></mrow><mo>‾</mo></mover><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>ℓ</mi></mrow></msup></mrow></msup><mo>−</mo><mi>y</mi><mo>=</mo><mover><mrow><mi>f</mi></mrow><mo>‾</mo></mover></math></span> is called ordinary if its normalized Newton polygon achieves the infimum in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>(</mo><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span>. Given <em>ℓ</em> and a number field <em>K</em>, we show that there exists a Zariski dense open subset <span><math><mi>U</mi></math></span> in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, defined over <span><math><mi>Q</mi></math></span>, such that if <span><math><mi>f</mi><mo>∈</mo><mi>U</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span> then <span><math><msub><mrow><mi>X</mi></mrow><mrow><mo>(</mo><mi>f</mi><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mo>℘</mo><mo>)</mo><mo>,</mo><mi>ℓ</mi></mrow></msub></math></span> is ordinary for all primes <span><math><mo>℘</mo><mo>|</mo><mi>p</mi></math></span> with <span><math><mi>deg</mi><mo>⁡</mo><mo>(</mo><mo>℘</mo><mo>)</mo><mo>∈</mo><mi>ℓ</mi><mi>Z</mi></math></span> and <em>p</em> large enough.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 323-347"},"PeriodicalIF":0.7,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144722497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iwasawa theory for Rankin-Selberg product at an Eisenstein prime 爱森斯坦素数下Rankin-Selberg积的Iwasawa理论
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-07-21 DOI: 10.1016/j.jnt.2025.06.007
Somnath Jha , Sudhanshu Shekhar , Ravitheja Vangala
{"title":"Iwasawa theory for Rankin-Selberg product at an Eisenstein prime","authors":"Somnath Jha ,&nbsp;Sudhanshu Shekhar ,&nbsp;Ravitheja Vangala","doi":"10.1016/j.jnt.2025.06.007","DOIUrl":"10.1016/j.jnt.2025.06.007","url":null,"abstract":"<div><div>Let <em>p</em> be an odd prime, <em>f</em> be a <em>p</em>-ordinary newform of weight <em>k</em> and <em>h</em> be a normalized cuspidal <em>p</em>-ordinary Hecke eigenform of weight <span><math><mi>l</mi><mo>&lt;</mo><mi>k</mi></math></span>. In this article, we study the <em>p</em>-adic <em>L</em>-function and <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-Selmer group of the Rankin-Selberg product of <em>f</em> and <em>h</em> under the assumption that <em>p</em> is an Eisenstein prime for <em>h</em> i.e. the residual Galois representation of <em>h</em> at <em>p</em> is reducible. We show that the <em>p</em>-adic <em>L</em>-function and the characteristic ideal of the <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-Selmer group of the Rankin-Selberg product of <span><math><mi>f</mi><mo>,</mo><mi>h</mi></math></span> generate the same ideal modulo <em>p</em> in the Iwasawa algebra i.e. the Rankin-Selberg Iwasawa main conjecture for <span><math><mi>f</mi><mo>⊗</mo><mi>h</mi></math></span> holds mod <em>p</em>. As an application to our results, we explicitly describe a few examples where the above congruence holds.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 348-410"},"PeriodicalIF":0.7,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144724475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信