{"title":"Corrigendum to: “A Lehmer-type lower bound for the canonical height on elliptic curves over function fields” [J. Number Theory 262 (2024) 506–538]","authors":"Joseph H. Silverman","doi":"10.1016/j.jnt.2025.06.016","DOIUrl":"10.1016/j.jnt.2025.06.016","url":null,"abstract":"<div><div>We correct a constant appearing in an inequality, and explain how the change propagates through the paper to change various other constants. The revised result is the lower bound<span><span><span><math><msub><mrow><mover><mrow><mi>h</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo><mo>≥</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>18000</mn><mo>⋅</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>F</mi></mrow></msub><msup><mrow><mo>(</mo><msub><mrow><mi>j</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>⋅</mo><msup><mrow><mo>[</mo><mi>K</mi><mo>:</mo><mi>F</mi><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>,</mo></math></span></span></span> in which the fraction <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>18000</mn></mrow></mfrac></math></span> replaces the constant <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>10500</mn></mrow></mfrac></math></span> appearing in the original publication, and with the added requirement that <span><math><mo>[</mo><mi>K</mi><mo>:</mo><mi>F</mi><mo>]</mo><mo>≥</mo><mn>6</mn></math></span>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 267-269"},"PeriodicalIF":0.6,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144702882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C.G. Karthick Babu , E. Malavika , G.K. Viswanadham
{"title":"Poissonian pair correlation of linear generalized monomials over primes","authors":"C.G. Karthick Babu , E. Malavika , G.K. Viswanadham","doi":"10.1016/j.jnt.2025.06.012","DOIUrl":"10.1016/j.jnt.2025.06.012","url":null,"abstract":"<div><div>We consider the Poissonian pair correlation of the sequence <span><math><msub><mrow><mo>(</mo><mo>⌊</mo><mi>p</mi><mi>α</mi><mo>⌋</mo><mo>)</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span> generated by the generalized polynomial <span><math><mo>⌊</mo><mi>α</mi><mi>X</mi><mo>⌋</mo></math></span>, where <em>p</em> runs over the sequence of primes and <em>α</em> is an irrational number. We show that for any irrational <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> of finite type, the sequence <span><math><msub><mrow><mo>(</mo><mo>⌊</mo><mi>p</mi><mi>α</mi><mo>⌋</mo><mo>)</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span> is not metric Poissonian. This is done by considering an additive problem similar to the even Goldbach conjecture. We also give upper and lower bounds for the additive energy of the sequence <span><math><msub><mrow><mo>(</mo><mo>⌊</mo><mi>p</mi><mi>α</mi><mo>⌋</mo><mo>)</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 270-293"},"PeriodicalIF":0.6,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144702881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bol's identity for skew-holomorphic Jacobi forms","authors":"Youngmin Lee , Subong Lim","doi":"10.1016/j.jnt.2025.06.015","DOIUrl":"10.1016/j.jnt.2025.06.015","url":null,"abstract":"<div><div>In this paper, we study an analogy of the heat operator to the skew-holomorphic Jacobi form case. Using this, we prove Bol's identity for skew-holomorphic Jacobi forms on <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>×</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>j</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span>. This induces a map from skew-holomorphic Jacobi forms of weight <span><math><mo>−</mo><mi>k</mi><mo>+</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mi>j</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> to those of weight <span><math><mi>k</mi><mo>+</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mi>j</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mn>2</mn></math></span>. When <span><math><mi>n</mi><mo>=</mo><mi>j</mi><mo>=</mo><mn>1</mn></math></span>, this map extends to skew-holomorphic harmonic Maass-Jacobi forms. In this case, we prove Zagier-type duality between Fourier coefficients of harmonic Maass-Jacobi forms and Fourier coefficients of weakly skew-holomorphic Jacobi forms.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 216-237"},"PeriodicalIF":0.6,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144702916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards the Fontaine-Mazur conjecture for biquadratic extensions: An example","authors":"Ramla Abdellatif , Supriya Pisolkar","doi":"10.1016/j.jnt.2025.06.005","DOIUrl":"10.1016/j.jnt.2025.06.005","url":null,"abstract":"<div><div>We prove that the Galois group of the maximal everywhere unramified pro-3-extension <em>L</em> of the biquadratic field <span><math><mi>K</mi><mo>:</mo><mo>=</mo><mi>Q</mi><mo>(</mo><msqrt><mrow><mo>−</mo><mn>26</mn></mrow></msqrt><mo>,</mo><msqrt><mrow><mn>229</mn></mrow></msqrt><mo>)</mo></math></span> has no infinite <em>p</em>-adic analytic pro-3 quotient. This answers negatively a question asked by Boston in his fundamental 1992 paper <span><span>[4]</span></span>, in which it was observed that the Galois group of <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span>, if admitting such a quotient, may provide a counter example to the Fontaine-Mazur conjecture 1.1.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 457-478"},"PeriodicalIF":0.7,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144724477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Bass' conjecture of the small Davenport constant","authors":"Guoqing Wang, Yang Zhao","doi":"10.1016/j.jnt.2025.06.009","DOIUrl":"10.1016/j.jnt.2025.06.009","url":null,"abstract":"<div><div>Let <em>G</em> be a finite group. The small Davenport constant <span><math><mi>d</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em> is the maximal integer <em>ℓ</em> such that there is a sequence of length <em>ℓ</em> over <em>G</em> which has no nonempty product-one subsequence. In 2007, Bass conjectured that <span><math><mi>d</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>−</mo><mn>2</mn></math></span>, where <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>=</mo><mo>〈</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>|</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>y</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>〉</mo></math></span>, and <em>s</em> has order <em>m</em> modulo <em>n</em>. In this paper, we confirm the conjecture for any group <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> with additional conditions that <em>s</em> has order <em>m</em> modulo <em>q</em>, for every prime divisor <em>q</em> of <em>n</em>. Moreover, we solve the associated inverse problem characterizing the structure of any product-one free sequence with extremal length <span><math><mi>d</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>)</mo></math></span>. Our results generalize some obtained theorems on this problem.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 512-526"},"PeriodicalIF":0.7,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144724712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The generalized linear period and the Shalika period over a division algebra","authors":"Hengfei Lu","doi":"10.1016/j.jnt.2025.06.013","DOIUrl":"10.1016/j.jnt.2025.06.013","url":null,"abstract":"<div><div>Let <em>F</em> be a local field of characteristic zero. Let <em>D</em> be a division algebra over <em>F</em> of degree <em>d</em>. Let <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msub><mo>=</mo><msub><mrow><mi>GL</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo><mo>×</mo><msub><mrow><mi>GL</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> with <span><math><mi>p</mi><mo>+</mo><mi>q</mi><mo>=</mo><mi>n</mi></math></span>. Let <em>π</em> be an irreducible smooth admissible representation of <em>G</em> and let <em>χ</em> be any character of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msub></math></span>. In this short paper, we investigate the relation between the Shalika period of <em>π</em> and the generalized linear period with respect to <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 238-255"},"PeriodicalIF":0.6,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144702879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A simple proof of a reverse Minkowski theorem for integral lattices","authors":"Oded Regev , Noah Stephens-Davidowitz","doi":"10.1016/j.jnt.2025.06.014","DOIUrl":"10.1016/j.jnt.2025.06.014","url":null,"abstract":"<div><div>We prove that for any integral lattice <span><math><mi>L</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> (that is, a lattice <span><math><mi>L</mi></math></span> such that the inner product <span><math><mo>〈</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>〉</mo></math></span> is an integer for all <span><math><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>L</mi></math></span>) and any positive integer <em>k</em>,<span><span><span><math><mo>|</mo><mo>{</mo><mi>y</mi><mo>∈</mo><mi>L</mi><mspace></mspace><mo>:</mo><mspace></mspace><msup><mrow><mo>‖</mo><mi>y</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>k</mi><mo>}</mo><mo>|</mo><mo>≤</mo><mn>2</mn><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>+</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mn>2</mn><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mspace></mspace><mo>,</mo></math></span></span></span> giving a nearly tight reverse Minkowski theorem for integral lattices.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 256-266"},"PeriodicalIF":0.6,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144702880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Remarks on p-primary torsion of the Brauer group","authors":"Yuan Yang","doi":"10.1016/j.jnt.2025.06.003","DOIUrl":"10.1016/j.jnt.2025.06.003","url":null,"abstract":"<div><div>For a smooth and proper variety <em>X</em> over an algebraically closed field <em>k</em> of characteristic <span><math><mi>p</mi><mo>></mo><mn>0</mn></math></span>, the group <span><math><mrow><mi>Br</mi></mrow><mo>(</mo><mi>X</mi><mo>)</mo><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>]</mo></math></span> is a direct sum of finitely many copies of <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>/</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>(</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>]</mo></math></span>, an abelian group of finite exponent. The latter is an extension of a finite group <em>J</em> by the group of <em>k</em>-points of a connected commutative unipotent algebraic group <em>U</em>. In this paper we show that (1) if <em>X</em> is ordinary, then <span><math><mi>U</mi><mo>=</mo><mn>0</mn></math></span>; (2) if <em>X</em> is a surface, then <em>J</em> is the Pontryagin dual of <span><math><mrow><mi>NS</mi></mrow><mo>(</mo><mi>X</mi><mo>)</mo><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>]</mo></math></span>; (3) if <em>X</em> is an abelian variety, then <span><math><mi>J</mi><mo>=</mo><mn>0</mn></math></span>. Using Crew's formula and Ekedahl's inequality, we compute the dimension of <em>U</em> for surfaces and for abelian 3-folds. We show that, if <em>X</em> is ordinary, then the unipotent subgroup of <span><math><mrow><mi>Br</mi></mrow><mo>(</mo><mi>X</mi><mo>×</mo><mi>Y</mi><mo>)</mo></math></span> is isomorphic to the unipotent subgroup of <span><math><mrow><mi>Br</mi></mrow><mo>(</mo><mi>Y</mi><mo>)</mo></math></span>. Generalizing a result of Ogus, we give a criterion for the injectivity of the canonical map from flat to crystalline cohomology in degree 2.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 184-215"},"PeriodicalIF":0.6,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144687069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotic variation of elementary abelian p-extensions over P1","authors":"Hui June Zhu","doi":"10.1016/j.jnt.2025.06.004","DOIUrl":"10.1016/j.jnt.2025.06.004","url":null,"abstract":"<div><div>Let <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> denote the coefficient space of all degree-<em>d</em> polynomials <em>f</em> in one variable for some <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>. For any <span><math><mover><mrow><mi>f</mi></mrow><mo>‾</mo></mover><mo>∈</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>(</mo><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span>, a rank-<em>ℓ</em> Artin-Schreier curve <span><math><msub><mrow><mi>X</mi></mrow><mrow><mover><mrow><mi>f</mi></mrow><mo>‾</mo></mover><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>ℓ</mi></mrow></msup></mrow></msup><mo>−</mo><mi>y</mi><mo>=</mo><mover><mrow><mi>f</mi></mrow><mo>‾</mo></mover></math></span> is called ordinary if its normalized Newton polygon achieves the infimum in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>(</mo><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span>. Given <em>ℓ</em> and a number field <em>K</em>, we show that there exists a Zariski dense open subset <span><math><mi>U</mi></math></span> in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, defined over <span><math><mi>Q</mi></math></span>, such that if <span><math><mi>f</mi><mo>∈</mo><mi>U</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span> then <span><math><msub><mrow><mi>X</mi></mrow><mrow><mo>(</mo><mi>f</mi><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mo>℘</mo><mo>)</mo><mo>,</mo><mi>ℓ</mi></mrow></msub></math></span> is ordinary for all primes <span><math><mo>℘</mo><mo>|</mo><mi>p</mi></math></span> with <span><math><mi>deg</mi><mo></mo><mo>(</mo><mo>℘</mo><mo>)</mo><mo>∈</mo><mi>ℓ</mi><mi>Z</mi></math></span> and <em>p</em> large enough.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 323-347"},"PeriodicalIF":0.7,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144722497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Iwasawa theory for Rankin-Selberg product at an Eisenstein prime","authors":"Somnath Jha , Sudhanshu Shekhar , Ravitheja Vangala","doi":"10.1016/j.jnt.2025.06.007","DOIUrl":"10.1016/j.jnt.2025.06.007","url":null,"abstract":"<div><div>Let <em>p</em> be an odd prime, <em>f</em> be a <em>p</em>-ordinary newform of weight <em>k</em> and <em>h</em> be a normalized cuspidal <em>p</em>-ordinary Hecke eigenform of weight <span><math><mi>l</mi><mo><</mo><mi>k</mi></math></span>. In this article, we study the <em>p</em>-adic <em>L</em>-function and <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-Selmer group of the Rankin-Selberg product of <em>f</em> and <em>h</em> under the assumption that <em>p</em> is an Eisenstein prime for <em>h</em> i.e. the residual Galois representation of <em>h</em> at <em>p</em> is reducible. We show that the <em>p</em>-adic <em>L</em>-function and the characteristic ideal of the <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-Selmer group of the Rankin-Selberg product of <span><math><mi>f</mi><mo>,</mo><mi>h</mi></math></span> generate the same ideal modulo <em>p</em> in the Iwasawa algebra i.e. the Rankin-Selberg Iwasawa main conjecture for <span><math><mi>f</mi><mo>⊗</mo><mi>h</mi></math></span> holds mod <em>p</em>. As an application to our results, we explicitly describe a few examples where the above congruence holds.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 348-410"},"PeriodicalIF":0.7,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144724475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}