P1上初等阿贝尔p扩展的渐近变分

IF 0.7 3区 数学 Q3 MATHEMATICS
Hui June Zhu
{"title":"P1上初等阿贝尔p扩展的渐近变分","authors":"Hui June Zhu","doi":"10.1016/j.jnt.2025.06.004","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> denote the coefficient space of all degree-<em>d</em> polynomials <em>f</em> in one variable for some <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>. For any <span><math><mover><mrow><mi>f</mi></mrow><mo>‾</mo></mover><mo>∈</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>(</mo><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span>, a rank-<em>ℓ</em> Artin-Schreier curve <span><math><msub><mrow><mi>X</mi></mrow><mrow><mover><mrow><mi>f</mi></mrow><mo>‾</mo></mover><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>ℓ</mi></mrow></msup></mrow></msup><mo>−</mo><mi>y</mi><mo>=</mo><mover><mrow><mi>f</mi></mrow><mo>‾</mo></mover></math></span> is called ordinary if its normalized Newton polygon achieves the infimum in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>(</mo><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span>. Given <em>ℓ</em> and a number field <em>K</em>, we show that there exists a Zariski dense open subset <span><math><mi>U</mi></math></span> in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, defined over <span><math><mi>Q</mi></math></span>, such that if <span><math><mi>f</mi><mo>∈</mo><mi>U</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span> then <span><math><msub><mrow><mi>X</mi></mrow><mrow><mo>(</mo><mi>f</mi><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mo>℘</mo><mo>)</mo><mo>,</mo><mi>ℓ</mi></mrow></msub></math></span> is ordinary for all primes <span><math><mo>℘</mo><mo>|</mo><mi>p</mi></math></span> with <span><math><mi>deg</mi><mo>⁡</mo><mo>(</mo><mo>℘</mo><mo>)</mo><mo>∈</mo><mi>ℓ</mi><mi>Z</mi></math></span> and <em>p</em> large enough.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 323-347"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic variation of elementary abelian p-extensions over P1\",\"authors\":\"Hui June Zhu\",\"doi\":\"10.1016/j.jnt.2025.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> denote the coefficient space of all degree-<em>d</em> polynomials <em>f</em> in one variable for some <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>. For any <span><math><mover><mrow><mi>f</mi></mrow><mo>‾</mo></mover><mo>∈</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>(</mo><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span>, a rank-<em>ℓ</em> Artin-Schreier curve <span><math><msub><mrow><mi>X</mi></mrow><mrow><mover><mrow><mi>f</mi></mrow><mo>‾</mo></mover><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>ℓ</mi></mrow></msup></mrow></msup><mo>−</mo><mi>y</mi><mo>=</mo><mover><mrow><mi>f</mi></mrow><mo>‾</mo></mover></math></span> is called ordinary if its normalized Newton polygon achieves the infimum in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>(</mo><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span>. Given <em>ℓ</em> and a number field <em>K</em>, we show that there exists a Zariski dense open subset <span><math><mi>U</mi></math></span> in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, defined over <span><math><mi>Q</mi></math></span>, such that if <span><math><mi>f</mi><mo>∈</mo><mi>U</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span> then <span><math><msub><mrow><mi>X</mi></mrow><mrow><mo>(</mo><mi>f</mi><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mo>℘</mo><mo>)</mo><mo>,</mo><mi>ℓ</mi></mrow></msub></math></span> is ordinary for all primes <span><math><mo>℘</mo><mo>|</mo><mi>p</mi></math></span> with <span><math><mi>deg</mi><mo>⁡</mo><mo>(</mo><mo>℘</mo><mo>)</mo><mo>∈</mo><mi>ℓ</mi><mi>Z</mi></math></span> and <em>p</em> large enough.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"279 \",\"pages\":\"Pages 323-347\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25001866\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25001866","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

令Ad表示某d≥3时,所有d次多项式f在一个变量中的系数空间。对于任何f -∈Ad(f - p),如果它的归一化牛顿多边形在Ad(f - p)中达到最小值,那么一个秩- r的Artin-Schreier曲线Xf,其中,如果它的归一化牛顿多边形在Ad(f - p)中达到最小值,则称为普通。给定r和一个数域K,我们证明了在Ad中存在一个定义在Q上的Zariski稠密开子集U,使得如果f∈U(K)那么X(fmod p), p对于所有质数p (p∈p)是普通的,且p足够大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic variation of elementary abelian p-extensions over P1
Let Ad denote the coefficient space of all degree-d polynomials f in one variable for some d3. For any fAd(Fp), a rank- Artin-Schreier curve Xf,:ypy=f is called ordinary if its normalized Newton polygon achieves the infimum in Ad(Fp). Given and a number field K, we show that there exists a Zariski dense open subset U in Ad, defined over Q, such that if fU(K) then X(fmod), is ordinary for all primes |p with deg()Z and p large enough.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信