{"title":"爱森斯坦素数下Rankin-Selberg积的Iwasawa理论","authors":"Somnath Jha , Sudhanshu Shekhar , Ravitheja Vangala","doi":"10.1016/j.jnt.2025.06.007","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>p</em> be an odd prime, <em>f</em> be a <em>p</em>-ordinary newform of weight <em>k</em> and <em>h</em> be a normalized cuspidal <em>p</em>-ordinary Hecke eigenform of weight <span><math><mi>l</mi><mo><</mo><mi>k</mi></math></span>. In this article, we study the <em>p</em>-adic <em>L</em>-function and <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-Selmer group of the Rankin-Selberg product of <em>f</em> and <em>h</em> under the assumption that <em>p</em> is an Eisenstein prime for <em>h</em> i.e. the residual Galois representation of <em>h</em> at <em>p</em> is reducible. We show that the <em>p</em>-adic <em>L</em>-function and the characteristic ideal of the <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-Selmer group of the Rankin-Selberg product of <span><math><mi>f</mi><mo>,</mo><mi>h</mi></math></span> generate the same ideal modulo <em>p</em> in the Iwasawa algebra i.e. the Rankin-Selberg Iwasawa main conjecture for <span><math><mi>f</mi><mo>⊗</mo><mi>h</mi></math></span> holds mod <em>p</em>. As an application to our results, we explicitly describe a few examples where the above congruence holds.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 348-410"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iwasawa theory for Rankin-Selberg product at an Eisenstein prime\",\"authors\":\"Somnath Jha , Sudhanshu Shekhar , Ravitheja Vangala\",\"doi\":\"10.1016/j.jnt.2025.06.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>p</em> be an odd prime, <em>f</em> be a <em>p</em>-ordinary newform of weight <em>k</em> and <em>h</em> be a normalized cuspidal <em>p</em>-ordinary Hecke eigenform of weight <span><math><mi>l</mi><mo><</mo><mi>k</mi></math></span>. In this article, we study the <em>p</em>-adic <em>L</em>-function and <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-Selmer group of the Rankin-Selberg product of <em>f</em> and <em>h</em> under the assumption that <em>p</em> is an Eisenstein prime for <em>h</em> i.e. the residual Galois representation of <em>h</em> at <em>p</em> is reducible. We show that the <em>p</em>-adic <em>L</em>-function and the characteristic ideal of the <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-Selmer group of the Rankin-Selberg product of <span><math><mi>f</mi><mo>,</mo><mi>h</mi></math></span> generate the same ideal modulo <em>p</em> in the Iwasawa algebra i.e. the Rankin-Selberg Iwasawa main conjecture for <span><math><mi>f</mi><mo>⊗</mo><mi>h</mi></math></span> holds mod <em>p</em>. As an application to our results, we explicitly describe a few examples where the above congruence holds.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"279 \",\"pages\":\"Pages 348-410\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25001908\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25001908","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Iwasawa theory for Rankin-Selberg product at an Eisenstein prime
Let p be an odd prime, f be a p-ordinary newform of weight k and h be a normalized cuspidal p-ordinary Hecke eigenform of weight . In this article, we study the p-adic L-function and -Selmer group of the Rankin-Selberg product of f and h under the assumption that p is an Eisenstein prime for h i.e. the residual Galois representation of h at p is reducible. We show that the p-adic L-function and the characteristic ideal of the -Selmer group of the Rankin-Selberg product of generate the same ideal modulo p in the Iwasawa algebra i.e. the Rankin-Selberg Iwasawa main conjecture for holds mod p. As an application to our results, we explicitly describe a few examples where the above congruence holds.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.