Journal of Number Theory最新文献

筛选
英文 中文
Note on a theorem of Birch–Erdős and m-ary partitions 关于Birch-Erdős和m个分区定理的注意事项
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-08-21 DOI: 10.1016/j.jnt.2025.07.009
Yuchen Ding , Honghu Liu , Zi Wang
{"title":"Note on a theorem of Birch–Erdős and m-ary partitions","authors":"Yuchen Ding ,&nbsp;Honghu Liu ,&nbsp;Zi Wang","doi":"10.1016/j.jnt.2025.07.009","DOIUrl":"10.1016/j.jnt.2025.07.009","url":null,"abstract":"<div><div>Let <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>&gt;</mo><mn>1</mn></math></span> be two relatively prime integers and <span><math><mi>N</mi></math></span> the set of nonnegative integers. Let <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> be the number of different expressions of <em>n</em> written as a sum of distinct terms taken from <span><math><mo>{</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>α</mi></mrow></msup><msup><mrow><mi>q</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>:</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>∈</mo><mi>N</mi><mo>}</mo></math></span>. Erdős conjectured and then Birch proved that <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><mn>1</mn></math></span> provided that <em>n</em> is sufficiently large. In this note, for all sufficiently large number <em>n</em> we prove<span><span><span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn><mi>log</mi><mo>⁡</mo><mi>p</mi><mi>log</mi><mo>⁡</mo><mi>q</mi></mrow></mfrac><mo>(</mo><mn>1</mn><mo>+</mo><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>/</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo><mo>)</mo></mrow></msup><mo>.</mo></math></span></span></span> We also show that <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>⁡</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. Additionally, we will point out the relations between <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and <em>m</em>-ary partitions.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 910-928"},"PeriodicalIF":0.7,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144908202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exponential shrinking problem in multiplicative Diophantine approximation 乘式丢番图近似中的指数收缩问题
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-08-21 DOI: 10.1016/j.jnt.2025.07.016
Qi Jia, Junjie Shi
{"title":"Exponential shrinking problem in multiplicative Diophantine approximation","authors":"Qi Jia,&nbsp;Junjie Shi","doi":"10.1016/j.jnt.2025.07.016","DOIUrl":"10.1016/j.jnt.2025.07.016","url":null,"abstract":"<div><div>Besides limsup set, the liminf set also appears widely in Diophantine approximation. It gives precise information about when a point can be well approximated compared with limsup set. Moreover, one usually uses liminf set to determine the dimension of limsup set from below. In this paper, we consider the liminf setting within the context of multiplicative Diophantine approximation. More precisely, let <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> be a sequence of positive integers with exponential growth speed. For any <span><math><mi>τ</mi><mo>&gt;</mo><mn>0</mn></math></span>, define<span><span><span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>τ</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>d</mi></mrow></munderover><mo>‖</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>‖</mo><mo>≤</mo><msubsup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>τ</mi></mrow></msubsup><mspace></mspace><mspace></mspace><mrow><mi>for all</mi></mrow><mspace></mspace><mspace></mspace><mi>n</mi><mspace></mspace><mrow><mi>ultimately</mi></mrow><mo>}</mo></mrow><mo>.</mo></math></span></span></span> Hausdorff dimension of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> is presented in this note.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 969-986"},"PeriodicalIF":0.7,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144925789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proof of the complete presence of a modulo 4 bias for the semiprimes 半素数的模4偏置完全存在的证明
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-08-21 DOI: 10.1016/j.jnt.2025.07.004
Miroslav Marinov , Nikola Gyulev
{"title":"Proof of the complete presence of a modulo 4 bias for the semiprimes","authors":"Miroslav Marinov ,&nbsp;Nikola Gyulev","doi":"10.1016/j.jnt.2025.07.004","DOIUrl":"10.1016/j.jnt.2025.07.004","url":null,"abstract":"<div><div>In 2016, Dummit, Granville, and Kisilevsky showed that the proportion of semiprimes (products of two primes) not exceeding a given <em>x</em>, whose factors are congruent to 3 modulo 4, is more than a quarter when <em>x</em> is sufficiently large. They have also conjectured that this holds from the very beginning, that is, for all <span><math><mi>x</mi><mo>≥</mo><mn>9</mn></math></span>. Here we give a proof of this conjecture. For <span><math><mi>x</mi><mo>≥</mo><mn>1.1</mn><mo>⋅</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>13</mn></mrow></msup></math></span> we take an explicit approach based on their work. We rely on classical estimates for prime counting functions, as well as on very recent explicit improvements by Bennett, Martin, O'Bryant, and Rechnitzer, which have wide applications in essentially any setting involving estimations of sums over primes in arithmetic progressions. All <span><math><mi>x</mi><mo>&lt;</mo><mn>1.1</mn><mo>⋅</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>13</mn></mrow></msup></math></span> are covered by a computed assisted verification.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 777-791"},"PeriodicalIF":0.7,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144904486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ramification filtration via deformations, II 通过变形的分枝过滤,2
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-08-21 DOI: 10.1016/j.jnt.2025.07.005
Victor Abrashkin
{"title":"Ramification filtration via deformations, II","authors":"Victor Abrashkin","doi":"10.1016/j.jnt.2025.07.005","DOIUrl":"10.1016/j.jnt.2025.07.005","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; be a field of formal Laurent series with coefficients in a finite field of characteristic &lt;em&gt;p&lt;/em&gt;. For &lt;span&gt;&lt;math&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, let &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; be the maximal quotient of the Galois group of &lt;span&gt;&lt;math&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of period &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and nilpotent class &lt;&lt;em&gt;p&lt;/em&gt; and let &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;⩾&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; be the filtration by ramification subgroups in upper numbering. We use the identification &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; of nilpotent Artin-Schreier theory: here &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is the group obtained from a suitable profinite Lie &lt;span&gt;&lt;math&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;-algebra &lt;span&gt;&lt;math&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; via the Campbell-Hausdorff composition law. We develop new techniques to obtain a “geometrical” construction of the ideals &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; such that &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;. Given &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⩾&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, we construct a decreasing central filtration &lt;span&gt;&lt;math&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;⩽&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;⩽&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, on &lt;span&gt;&lt;math&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, an epimorphism of Lie &lt;span&gt;&lt;math&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;-algebras &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;†&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;⟶&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, and a unipotent action Ω of &lt;span&gt;&lt;math&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; on &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;†&lt;/m","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 651-690"},"PeriodicalIF":0.7,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144904482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bushnell-Reiner zeta functions over two-dimensional semilocal rings 二维半局部环上的Bushnell-Reiner ζ函数
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-08-21 DOI: 10.1016/j.jnt.2025.07.010
Sean B. Lynch
{"title":"Bushnell-Reiner zeta functions over two-dimensional semilocal rings","authors":"Sean B. Lynch","doi":"10.1016/j.jnt.2025.07.010","DOIUrl":"10.1016/j.jnt.2025.07.010","url":null,"abstract":"<div><div>Lustig gave an infinite product formula for the zeta function of a commutative two-dimensional regular local ring with finite residue field. We extend this to the noncommutative setting with a method based on filtration by an invertible ideal. One application gives an abstract two-dimensional analogue of Hey's formula. Another application provides effective formulae for zeta functions over Rump's two-dimensional regular semiperfect rings. In the appendices, we supplement these two-dimensional applications with requisite one-dimensional calculations.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 1-34"},"PeriodicalIF":0.7,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144921775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variance of point-counts for families of cubic curves over Fp and Jacobsthal sums 三次曲线族在Fp和Jacobsthal和上的点计数方差
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-08-21 DOI: 10.1016/j.jnt.2025.07.014
Bogdan Nica
{"title":"Variance of point-counts for families of cubic curves over Fp and Jacobsthal sums","authors":"Bogdan Nica","doi":"10.1016/j.jnt.2025.07.014","DOIUrl":"10.1016/j.jnt.2025.07.014","url":null,"abstract":"<div><div>We compute the variance of the number of points along one-parameter families of cubic curves. We highlight explicit evaluations of variances that make use of Jacobsthal sums.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 603-625"},"PeriodicalIF":0.7,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144902299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mass distribution for holomorphic cusp forms on the vertical geodesic 垂直测地线上全纯尖形的质量分布
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-08-21 DOI: 10.1016/j.jnt.2025.07.011
Qingfeng Sun , Qizhi Zhang
{"title":"Mass distribution for holomorphic cusp forms on the vertical geodesic","authors":"Qingfeng Sun ,&nbsp;Qizhi Zhang","doi":"10.1016/j.jnt.2025.07.011","DOIUrl":"10.1016/j.jnt.2025.07.011","url":null,"abstract":"<div><div>We compute the quantum variance of holomorphic cusp forms on the vertical geodesic for smooth compactly supported test functions. As an application we show that almost all holomorphic Hecke cusp forms, whose weights are in a short interval, satisfy QUE conjecture on the vertical geodesic.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 827-857"},"PeriodicalIF":0.7,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144907929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcendental nature of p-adic Euler-Lehmer constants p进Euler-Lehmer常数的超越性质
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-08-21 DOI: 10.1016/j.jnt.2025.07.018
Tapas Chatterjee , Sonam Garg
{"title":"Transcendental nature of p-adic Euler-Lehmer constants","authors":"Tapas Chatterjee ,&nbsp;Sonam Garg","doi":"10.1016/j.jnt.2025.07.018","DOIUrl":"10.1016/j.jnt.2025.07.018","url":null,"abstract":"<div><div>Murty and Saradha (2008) initiated a significant exploration into the transcendental nature of certain <em>p</em>-adic constants, focusing on the <em>p</em>-adic analogues of the Euler's constant <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and the Euler-Lehmer constant <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>r</mi><mo>/</mo><mi>p</mi><mo>)</mo></math></span>, where <em>p</em> is a rational prime with <span><math><mn>1</mn><mo>≤</mo><mi>r</mi><mo>&lt;</mo><mi>p</mi></math></span>. Their work laid the foundation for understanding these constants in the context of <em>p</em>-adic analysis.</div><div>This investigation was subsequently expanded by Chatterjee and Gun (2014), who extended the study to encompass the case of sets of prime numbers. In this article, we build upon their findings by generalizing the results further to include prime powers and products of prime powers. Our primary focus is to delve deeper into the transcendental properties of the <em>p</em>-adic analogues of the Euler-Lehmer constants in this broader framework.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 761-776"},"PeriodicalIF":0.7,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144904485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Injectivity of the genus 1 Kudla–Millson lift on locally symmetric spaces 局部对称空间上1属Kudla-Millson提升的注入性
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-08-21 DOI: 10.1016/j.jnt.2025.07.017
Ingmar Metzler , Riccardo Zuffetti
{"title":"Injectivity of the genus 1 Kudla–Millson lift on locally symmetric spaces","authors":"Ingmar Metzler ,&nbsp;Riccardo Zuffetti","doi":"10.1016/j.jnt.2025.07.017","DOIUrl":"10.1016/j.jnt.2025.07.017","url":null,"abstract":"<div><div>Let <em>L</em> be an even indefinite lattice. We show that if <em>L</em> splits off a hyperbolic plane and a scaled hyperbolic plane, then the Kudla–Millson lift of genus 1 associated to <em>L</em> is injective. Our result includes as special cases all previously known injectivity results on the whole space of elliptic cusp forms available in the literature. In particular, we also consider the Funke–Millson twist of the lift. Further, we provide geometric applications on locally symmetric spaces of orthogonal type.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 792-826"},"PeriodicalIF":0.7,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144907140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The m-th element of a Sidon set 西顿集合的第m个元素
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-08-20 DOI: 10.1016/j.jnt.2025.07.007
R. Balasubramanian , Sayan Dutta
{"title":"The m-th element of a Sidon set","authors":"R. Balasubramanian ,&nbsp;Sayan Dutta","doi":"10.1016/j.jnt.2025.07.007","DOIUrl":"10.1016/j.jnt.2025.07.007","url":null,"abstract":"<div><div>We prove that if <span><math><mi>A</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow></msub><mo>}</mo><mo>⊂</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span> is a Sidon set so that <span><math><mo>|</mo><mi>A</mi><mo>|</mo><mo>=</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>−</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, then<span><span><span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mi>m</mi><mo>⋅</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>+</mo><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>7</mn><mo>/</mo><mn>8</mn></mrow></msup><mo>)</mo></mrow><mo>+</mo><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>⋅</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>4</mn></mrow></msup><mo>)</mo></mrow></math></span></span></span> where <span><math><mi>L</mi><mo>=</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mn>0</mn><mo>,</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>}</mo></math></span>. As an application of this, we give easy proofs of some previously derived results. We proceed on to proving that for a dense Sidon set <em>S</em> and for any <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span>, we have<span><span><span><math><munder><mo>∑</mo><mrow><mi>a</mi><mo>∈</mo><mi>S</mi></mrow></munder><mi>a</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>+</mo><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>11</mn><mo>/</mo><mn>8</mn></mrow></msup><mo>)</mo></mrow></math></span></span></span> for all <span><math><mi>n</mi><mo>≤</mo><mi>N</mi></math></span> but at most <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>ε</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>+</mo><mi>ε</mi></mrow></msup><mo>)</mo></mrow></math></span> exceptions.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 594-602"},"PeriodicalIF":0.7,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144902298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信