Journal of Number Theory最新文献

筛选
英文 中文
The counting function for Elkies primes
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-02-27 DOI: 10.1016/j.jnt.2024.12.009
Meher Elijah Lippmann , Kevin J. McGown
{"title":"The counting function for Elkies primes","authors":"Meher Elijah Lippmann ,&nbsp;Kevin J. McGown","doi":"10.1016/j.jnt.2024.12.009","DOIUrl":"10.1016/j.jnt.2024.12.009","url":null,"abstract":"<div><div>Let <em>E</em> be an elliptic curve over a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> where <em>q</em> is a prime power. The Schoof–Elkies–Atkin (SEA) algorithm is a standard method for counting the number of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-points on <em>E</em>. The asymptotic complexity of the SEA algorithm depends on the distribution of the so-called Elkies primes.</div><div>Assuming GRH, we prove that the least Elkies prime is bounded by <span><math><msup><mrow><mo>(</mo><mn>2</mn><mi>log</mi><mo>⁡</mo><mn>4</mn><mi>q</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> when <span><math><mi>q</mi><mo>≥</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>9</mn></mrow></msup></math></span>. Previously, Satoh and Galbraith established an upper bound of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>q</mi><mo>)</mo></mrow><mrow><mn>2</mn><mo>+</mo><mi>ε</mi></mrow></msup><mo>)</mo></math></span>. Let <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> denote the number of Elkies primes less than <em>X</em>. Assuming GRH, we also show<span><span><span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>π</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><msqrt><mrow><mi>X</mi></mrow></msqrt><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>q</mi><mi>X</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>log</mi><mo>⁡</mo><mi>X</mi></mrow></mfrac><mo>)</mo></mrow><mspace></mspace><mo>.</mo></math></span></span></span></div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"275 ","pages":"Pages 35-48"},"PeriodicalIF":0.6,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143552301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semisimple Langlands for GL2(Qp) and mod p Hecke modules
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-02-27 DOI: 10.1016/j.jnt.2024.11.013
Cédric Pépin , Tobias Schmidt
{"title":"Semisimple Langlands for GL2(Qp) and mod p Hecke modules","authors":"Cédric Pépin ,&nbsp;Tobias Schmidt","doi":"10.1016/j.jnt.2024.11.013","DOIUrl":"10.1016/j.jnt.2024.11.013","url":null,"abstract":"<div><div>Let <span><math><mi>p</mi><mo>≥</mo><mn>5</mn></math></span> and let <span><math><mi>Z</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup><mo>)</mo></math></span> be the centre of the mod <em>p</em> pro-<em>p</em>-Iwahori Hecke algebra of <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span>. Let <em>X</em> be the projective curve parametrizing 2-dimensional mod <em>p</em> semi-simple representations of the absolute Galois group <span><math><mrow><mi>Gal</mi></mrow><mo>(</mo><msub><mrow><mover><mrow><mi>Q</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub><mo>/</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span>. We construct a quotient morphism of schemes <span><math><mi>L</mi><mo>:</mo><mi>Spec</mi><mspace></mspace><mi>Z</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup><mo>)</mo><mo>→</mo><mi>X</mi></math></span>. We then show that the correspondence between the specialization <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub><mo>,</mo><mi>z</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup></math></span> of the spherical <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup></math></span>-module <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup></math></span> from <span><span>[PS]</span></span> in closed points <span><math><mi>z</mi><mo>∈</mo><mi>Spec</mi><mspace></mspace><mi>Z</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup><mo>)</mo></math></span> and the Galois representation <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></msub></math></span> <em>is</em> the semi-simple mod <em>p</em> local Langlands correspondence for the group <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"274 ","pages":"Pages 219-251"},"PeriodicalIF":0.6,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143548218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A polytopal generalization of Apollonian packings and Descartes' theorem
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-02-27 DOI: 10.1016/j.jnt.2024.11.010
Jorge L. Ramírez Alfonsín , Iván Rasskin
{"title":"A polytopal generalization of Apollonian packings and Descartes' theorem","authors":"Jorge L. Ramírez Alfonsín ,&nbsp;Iván Rasskin","doi":"10.1016/j.jnt.2024.11.010","DOIUrl":"10.1016/j.jnt.2024.11.010","url":null,"abstract":"<div><div>We present a generalization of Descartes' theorem for the family of polytopal sphere packings arising from uniform polytopes. The corresponding quadratic equation is expressed in terms of geometric invariants of uniform polytopes which are closely connected to canonical realizations of edge-scribable polytopes. We use our generalization to construct integral Apollonian packings based on the Platonic solids. Additionally, we also introduce and discuss a new spectral invariant for edge-scribable polytopes.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"275 ","pages":"Pages 67-103"},"PeriodicalIF":0.6,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143552302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex numbers with a prescribed order of approximation and Zaremba's conjecture
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-02-27 DOI: 10.1016/j.jnt.2024.12.010
Gerardo González Robert, Mumtaz Hussain, Nikita Shulga
{"title":"Complex numbers with a prescribed order of approximation and Zaremba's conjecture","authors":"Gerardo González Robert,&nbsp;Mumtaz Hussain,&nbsp;Nikita Shulga","doi":"10.1016/j.jnt.2024.12.010","DOIUrl":"10.1016/j.jnt.2024.12.010","url":null,"abstract":"<div><div>Given <span><math><mi>b</mi><mo>=</mo><mo>−</mo><mi>A</mi><mo>±</mo><mi>i</mi></math></span> with <em>A</em> being a positive integer, we can represent any complex number as a power series in <em>b</em> with coefficients in <span><math><mi>A</mi><mo>=</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>}</mo></math></span>. We prove that, for any real <span><math><mi>τ</mi><mo>≥</mo><mn>2</mn></math></span> and any non-empty proper subset <span><math><mi>J</mi><mo>(</mo><mi>b</mi><mo>)</mo></math></span> of <span><math><mi>A</mi></math></span> with at least two elements, there are uncountably many complex numbers (including transcendental numbers) that can be expressed as power series in <em>b</em> with coefficients in <span><math><mi>J</mi><mo>(</mo><mi>b</mi><mo>)</mo></math></span> and with the irrationality exponent (in terms of Gaussian integers) equal to <em>τ</em>. One of the key ingredients in our construction is the ‘Folding Lemma’ applied to Hurwitz continued fractions. This motivates a Hurwitz continued fraction analogue of the well-known Zaremba's conjecture. We prove several results in support of this conjecture.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"274 ","pages":"Pages 1-25"},"PeriodicalIF":0.6,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143520772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Portraits of quadratic rational maps with a small critical cycle
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-02-27 DOI: 10.1016/j.jnt.2024.12.008
Tyler Dunaisky , David Krumm
{"title":"Portraits of quadratic rational maps with a small critical cycle","authors":"Tyler Dunaisky ,&nbsp;David Krumm","doi":"10.1016/j.jnt.2024.12.008","DOIUrl":"10.1016/j.jnt.2024.12.008","url":null,"abstract":"<div><div>Motivated by a uniform boundedness conjecture of Morton and Silverman, we study the graphs of pre-periodic points for maps in three families of dynamical systems, namely the collections of rational functions of degree two having a periodic critical point of period <em>n</em>, where <span><math><mi>n</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>}</mo></math></span>. In particular, we provide a conjecturally complete list of possible graphs of rational pre-periodic points in the case <span><math><mi>n</mi><mo>=</mo><mn>4</mn></math></span>, analogous to well-known work of Poonen for <span><math><mi>n</mi><mo>=</mo><mn>1</mn></math></span>, and we strengthen earlier results of Canci and Vishkautsan for <span><math><mi>n</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></math></span>. In addition, we address the problem of determining the representability of a given graph in our list by infinitely many distinct linear conjugacy classes of maps.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"275 ","pages":"Pages 135-159"},"PeriodicalIF":0.6,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143563377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some symbolic dynamics in real quadratic fields with applications to inhomogeneous minima
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-02-27 DOI: 10.1016/j.jnt.2025.01.019
Nick Ramsey
{"title":"Some symbolic dynamics in real quadratic fields with applications to inhomogeneous minima","authors":"Nick Ramsey","doi":"10.1016/j.jnt.2025.01.019","DOIUrl":"10.1016/j.jnt.2025.01.019","url":null,"abstract":"<div><div>Let <em>K</em> be a real quadratic field. We use a symbolic coding of the action of a fundamental unit on the torus <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>K</mi></mrow></msub><mo>=</mo><mo>(</mo><mi>K</mi><msub><mrow><mo>⊗</mo></mrow><mrow><mi>Q</mi></mrow></msub><mi>R</mi><mo>)</mo><mo>/</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> to study the family of subsets <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>⊆</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> of norm distance ≥<em>t</em> from the origin. As an application, we prove that inhomogeneous spectrum of <em>K</em> contains a dense set of elements of <em>K</em>, and conclude that all isolated inhomogeneous minima lie in <em>K</em>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"275 ","pages":"Pages 119-134"},"PeriodicalIF":0.6,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143563379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On prime numbers and quadratic forms represented by positive-definite, primitive quadratic forms
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-02-27 DOI: 10.1016/j.jnt.2024.12.014
Yves Martin
{"title":"On prime numbers and quadratic forms represented by positive-definite, primitive quadratic forms","authors":"Yves Martin","doi":"10.1016/j.jnt.2024.12.014","DOIUrl":"10.1016/j.jnt.2024.12.014","url":null,"abstract":"<div><div>In this note we show that every positive-definite, integral, primitive, <em>n</em>-ary quadratic form with <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span> represents infinitely many prime numbers and infinitely many primitive, non-equivalent, <em>m</em>-ary quadratic forms for each <span><math><mn>2</mn><mo>≤</mo><mi>m</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. We do so via an inductive argument which only requires to know the statement for <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span> (proved by H. Weber in 1882), and elementary linear algebra. The result on the representation of prime numbers by <em>n</em>-ary quadratic forms for arbitrary <span><math><mi>n</mi><mo>&gt;</mo><mn>2</mn></math></span> can be deduced from theorems already known, but the proof below is more direct and seems to be new in the literature. As an application we establish a non-vanishing result for Fourier-Jacobi coefficients of Siegel modular forms of any degree, level and Dirichlet character, subject to a condition on the conductor of the character.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"274 ","pages":"Pages 26-36"},"PeriodicalIF":0.6,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143520773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniform bounds for Kloosterman sums of half-integral weight, same-sign case
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-02-27 DOI: 10.1016/j.jnt.2024.11.012
Qihang Sun
{"title":"Uniform bounds for Kloosterman sums of half-integral weight, same-sign case","authors":"Qihang Sun","doi":"10.1016/j.jnt.2024.11.012","DOIUrl":"10.1016/j.jnt.2024.11.012","url":null,"abstract":"<div><div>In the previous paper <span><span>[Sun24]</span></span>, the author proved a uniform bound for sums of half-integral weight Kloosterman sums. This bound was applied to prove an exact formula for partitions of rank modulo 3. That uniform estimate provides a more precise bound for a certain class of multipliers compared to the 1983 result by Goldfeld and Sarnak and generalizes the 2009 result from Sarnak and Tsimerman to the half-integral weight case. However, the author only considered the case when the parameters satisfied <span><math><mover><mrow><mi>m</mi></mrow><mrow><mo>˜</mo></mrow></mover><mover><mrow><mi>n</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>&lt;</mo><mn>0</mn></math></span>. In this paper, we prove the same uniform bound when <span><math><mover><mrow><mi>m</mi></mrow><mrow><mo>˜</mo></mrow></mover><mover><mrow><mi>n</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>&gt;</mo><mn>0</mn></math></span> for further applications.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"274 ","pages":"Pages 104-139"},"PeriodicalIF":0.6,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143548347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Mahler measure of a family of polynomials with arbitrarily many variables
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-02-26 DOI: 10.1016/j.jnt.2024.11.011
Siva Sankar Nair
{"title":"The Mahler measure of a family of polynomials with arbitrarily many variables","authors":"Siva Sankar Nair","doi":"10.1016/j.jnt.2024.11.011","DOIUrl":"10.1016/j.jnt.2024.11.011","url":null,"abstract":"<div><div>We present an exact formula for the Mahler measure of an infinite family of polynomials with arbitrarily many variables. The formula is obtained by manipulating the integral defining the Mahler measure using certain transformations, followed by an iterative process that reduces this computation to the evaluation of certain polylogarithm functions at sixth roots of unity. This yields values of the Riemann zeta function and the Dirichlet <em>L</em>-function associated to the character of conductor 3.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"275 ","pages":"Pages 214-272"},"PeriodicalIF":0.6,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143637189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relative sizes of iterated sumsets
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-02-25 DOI: 10.1016/j.jnt.2025.01.007
Noah Kravitz
{"title":"Relative sizes of iterated sumsets","authors":"Noah Kravitz","doi":"10.1016/j.jnt.2025.01.007","DOIUrl":"10.1016/j.jnt.2025.01.007","url":null,"abstract":"<div><div>Let <em>hA</em> denote the <em>h</em>-fold sumset of a subset <em>A</em> of an abelian group. Resolving a problem of Nathanson, we show that for any prescribed permutations <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, there exist finite subsets <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊆</mo><mi>Z</mi></math></span> such that for each <span><math><mn>1</mn><mo>≤</mo><mi>h</mi><mo>≤</mo><mi>H</mi></math></span>, the relative order of the quantities <span><math><mo>|</mo><mi>h</mi><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><mo>,</mo><mo>…</mo><mo>,</mo><mo>|</mo><mi>h</mi><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>|</mo></math></span> is given by <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>. We also establish extensions where <span><math><mi>Z</mi></math></span> is replaced by any other infinite abelian group or where one prescribes some equalities (not only inequalities) among the sumset sizes.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"272 ","pages":"Pages 113-128"},"PeriodicalIF":0.6,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143510120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信