{"title":"补全p进l函数和坏素数处的欧拉系统","authors":"Raiza Corpuz , Daniel Delbourgo","doi":"10.1016/j.jnt.2025.06.011","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>M</em> denote a pure motive over a totally real number field <em>F</em>. If the Euler factors associated to the motive <em>M</em> at its bad primes satisfy a certain condition (<span><math><msup><mrow><mi>S</mi></mrow><mrow><mtext>dep</mtext></mrow></msup></math></span>), then we show that the (conjectural) primitive <em>p</em>-adic <em>L</em>-function attached to <em>M</em> is a linear combination of two <em>S</em>-depleted versions. We next verify (<span><math><msup><mrow><mi>S</mi></mrow><mrow><mtext>dep</mtext></mrow></msup></math></span>) holds for single, double and triple products of Hilbert modular forms, as well as their symmetric squares. If <span><math><mi>F</mi><mo>=</mo><mi>Q</mi></math></span> and each <em>ℓ</em>-adic realisation <span><math><msubsup><mrow><mi>V</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mtext>ét</mtext></mrow></msubsup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> is self-dual, this factorisation yields <em>primitive</em> zeta-elements attached to <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>/</mo><msup><mrow><mi>Q</mi></mrow><mrow><mtext>cyc</mtext></mrow></msup></mrow></msub></math></span> and a sharper divisibility in the Iwasawa Main Conjecture.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 527-563"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Replenishing p-adic L-functions and Euler systems at their bad primes\",\"authors\":\"Raiza Corpuz , Daniel Delbourgo\",\"doi\":\"10.1016/j.jnt.2025.06.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>M</em> denote a pure motive over a totally real number field <em>F</em>. If the Euler factors associated to the motive <em>M</em> at its bad primes satisfy a certain condition (<span><math><msup><mrow><mi>S</mi></mrow><mrow><mtext>dep</mtext></mrow></msup></math></span>), then we show that the (conjectural) primitive <em>p</em>-adic <em>L</em>-function attached to <em>M</em> is a linear combination of two <em>S</em>-depleted versions. We next verify (<span><math><msup><mrow><mi>S</mi></mrow><mrow><mtext>dep</mtext></mrow></msup></math></span>) holds for single, double and triple products of Hilbert modular forms, as well as their symmetric squares. If <span><math><mi>F</mi><mo>=</mo><mi>Q</mi></math></span> and each <em>ℓ</em>-adic realisation <span><math><msubsup><mrow><mi>V</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mtext>ét</mtext></mrow></msubsup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> is self-dual, this factorisation yields <em>primitive</em> zeta-elements attached to <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>/</mo><msup><mrow><mi>Q</mi></mrow><mrow><mtext>cyc</mtext></mrow></msup></mrow></msub></math></span> and a sharper divisibility in the Iwasawa Main Conjecture.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"279 \",\"pages\":\"Pages 527-563\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25001982\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25001982","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设M表示全实数域f上的纯动机,如果动机M在其坏素数处的欧拉因子满足一定的条件(Sdep),则我们证明了M上的(推测的)原始p进l函数是两个s耗尽版本的线性组合。接下来,我们验证了Hilbert模形式的单、双、三重积及其对称平方的成立。如果F=Q,并且每一个V -进实现V - r - qimt (M)是自对偶的,这种分解得到附加在M/Qcyc上的原始ζ元,并且在Iwasawa主猜想中具有更明显的可整除性。
Replenishing p-adic L-functions and Euler systems at their bad primes
Let M denote a pure motive over a totally real number field F. If the Euler factors associated to the motive M at its bad primes satisfy a certain condition (), then we show that the (conjectural) primitive p-adic L-function attached to M is a linear combination of two S-depleted versions. We next verify () holds for single, double and triple products of Hilbert modular forms, as well as their symmetric squares. If and each ℓ-adic realisation is self-dual, this factorisation yields primitive zeta-elements attached to and a sharper divisibility in the Iwasawa Main Conjecture.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.