Eleni Agathocleous , Antoine Joux , Daniele Taufer
{"title":"Hasse对上的椭圆曲线","authors":"Eleni Agathocleous , Antoine Joux , Daniele Taufer","doi":"10.1016/j.jnt.2025.05.008","DOIUrl":null,"url":null,"abstract":"<div><div>We call a pair of distinct prime powers <span><math><mo>(</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup><mo>)</mo></math></span> a Hasse pair if <span><math><mo>|</mo><msqrt><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msqrt><mo>−</mo><msqrt><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msqrt><mo>|</mo><mo>≤</mo><mn>1</mn></math></span>. For such pairs, we study the relation between the set <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> of isomorphism classes of elliptic curves defined over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub></math></span> with <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> points, and the set <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of isomorphism classes of elliptic curves over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> with <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> points. When both families <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> contain only ordinary elliptic curves, we prove that their isogeny graphs are isomorphic. When supersingular curves are involved, we describe which curves might belong to these sets. We also show that if both the <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>'s are odd and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≠</mo><mo>∅</mo></math></span>, then <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> always contains an ordinary elliptic curve. Conversely, if <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is even, then <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> may contain only supersingular curves precisely when <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is a given power of a Fermat or a Mersenne prime. In the case of odd Hasse pairs, we could not rule out the possibility of an empty union <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, but we give necessary conditions for such a case to exist. In an appendix, Moree and Sofos consider how frequently Hasse pairs occur using analytic number theory, making a connection with Andrica's conjecture on the difference between consecutive primes.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"278 ","pages":"Pages 924-952"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elliptic curves over Hasse pairs\",\"authors\":\"Eleni Agathocleous , Antoine Joux , Daniele Taufer\",\"doi\":\"10.1016/j.jnt.2025.05.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We call a pair of distinct prime powers <span><math><mo>(</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup><mo>)</mo></math></span> a Hasse pair if <span><math><mo>|</mo><msqrt><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msqrt><mo>−</mo><msqrt><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msqrt><mo>|</mo><mo>≤</mo><mn>1</mn></math></span>. For such pairs, we study the relation between the set <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> of isomorphism classes of elliptic curves defined over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub></math></span> with <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> points, and the set <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of isomorphism classes of elliptic curves over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> with <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> points. When both families <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> contain only ordinary elliptic curves, we prove that their isogeny graphs are isomorphic. When supersingular curves are involved, we describe which curves might belong to these sets. We also show that if both the <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>'s are odd and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≠</mo><mo>∅</mo></math></span>, then <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> always contains an ordinary elliptic curve. Conversely, if <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is even, then <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> may contain only supersingular curves precisely when <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is a given power of a Fermat or a Mersenne prime. In the case of odd Hasse pairs, we could not rule out the possibility of an empty union <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, but we give necessary conditions for such a case to exist. In an appendix, Moree and Sofos consider how frequently Hasse pairs occur using analytic number theory, making a connection with Andrica's conjecture on the difference between consecutive primes.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"278 \",\"pages\":\"Pages 924-952\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25001635\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25001635","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We call a pair of distinct prime powers a Hasse pair if . For such pairs, we study the relation between the set of isomorphism classes of elliptic curves defined over with points, and the set of isomorphism classes of elliptic curves over with points. When both families contain only ordinary elliptic curves, we prove that their isogeny graphs are isomorphic. When supersingular curves are involved, we describe which curves might belong to these sets. We also show that if both the 's are odd and , then always contains an ordinary elliptic curve. Conversely, if is even, then may contain only supersingular curves precisely when is a given power of a Fermat or a Mersenne prime. In the case of odd Hasse pairs, we could not rule out the possibility of an empty union , but we give necessary conditions for such a case to exist. In an appendix, Moree and Sofos consider how frequently Hasse pairs occur using analytic number theory, making a connection with Andrica's conjecture on the difference between consecutive primes.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.