Hasse对上的椭圆曲线

IF 0.6 3区 数学 Q3 MATHEMATICS
Eleni Agathocleous , Antoine Joux , Daniele Taufer
{"title":"Hasse对上的椭圆曲线","authors":"Eleni Agathocleous ,&nbsp;Antoine Joux ,&nbsp;Daniele Taufer","doi":"10.1016/j.jnt.2025.05.008","DOIUrl":null,"url":null,"abstract":"<div><div>We call a pair of distinct prime powers <span><math><mo>(</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup><mo>)</mo></math></span> a Hasse pair if <span><math><mo>|</mo><msqrt><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msqrt><mo>−</mo><msqrt><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msqrt><mo>|</mo><mo>≤</mo><mn>1</mn></math></span>. For such pairs, we study the relation between the set <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> of isomorphism classes of elliptic curves defined over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub></math></span> with <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> points, and the set <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of isomorphism classes of elliptic curves over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> with <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> points. When both families <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> contain only ordinary elliptic curves, we prove that their isogeny graphs are isomorphic. When supersingular curves are involved, we describe which curves might belong to these sets. We also show that if both the <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>'s are odd and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≠</mo><mo>∅</mo></math></span>, then <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> always contains an ordinary elliptic curve. Conversely, if <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is even, then <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> may contain only supersingular curves precisely when <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is a given power of a Fermat or a Mersenne prime. In the case of odd Hasse pairs, we could not rule out the possibility of an empty union <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, but we give necessary conditions for such a case to exist. In an appendix, Moree and Sofos consider how frequently Hasse pairs occur using analytic number theory, making a connection with Andrica's conjecture on the difference between consecutive primes.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"278 ","pages":"Pages 924-952"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elliptic curves over Hasse pairs\",\"authors\":\"Eleni Agathocleous ,&nbsp;Antoine Joux ,&nbsp;Daniele Taufer\",\"doi\":\"10.1016/j.jnt.2025.05.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We call a pair of distinct prime powers <span><math><mo>(</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup><mo>)</mo></math></span> a Hasse pair if <span><math><mo>|</mo><msqrt><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msqrt><mo>−</mo><msqrt><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msqrt><mo>|</mo><mo>≤</mo><mn>1</mn></math></span>. For such pairs, we study the relation between the set <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> of isomorphism classes of elliptic curves defined over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub></math></span> with <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> points, and the set <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of isomorphism classes of elliptic curves over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> with <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> points. When both families <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> contain only ordinary elliptic curves, we prove that their isogeny graphs are isomorphic. When supersingular curves are involved, we describe which curves might belong to these sets. We also show that if both the <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>'s are odd and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≠</mo><mo>∅</mo></math></span>, then <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> always contains an ordinary elliptic curve. Conversely, if <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is even, then <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> may contain only supersingular curves precisely when <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is a given power of a Fermat or a Mersenne prime. In the case of odd Hasse pairs, we could not rule out the possibility of an empty union <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, but we give necessary conditions for such a case to exist. In an appendix, Moree and Sofos consider how frequently Hasse pairs occur using analytic number theory, making a connection with Andrica's conjecture on the difference between consecutive primes.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"278 \",\"pages\":\"Pages 924-952\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25001635\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25001635","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果|q1−q2|≤1,我们称不同素数幂对(q1,q2)=(p1a1,p2a2)为Hasse对。对于这样的椭圆曲线对,我们研究了Fq1上具有q2点的椭圆曲线同构类集合E1与Fq2上具有q1点的椭圆曲线同构类集合E2之间的关系。当两个族Ei只包含普通椭圆曲线时,我们证明了它们的等同构图是同构的。当涉及到超奇异曲线时,我们描述了哪些曲线可能属于这些集合。我们还证明了如果qi都是奇数且E1∪E2≠∅,则E1∪E2总是包含一条普通椭圆曲线。相反,如果q1是偶数,那么当q2是费马素数或梅森素数的给定幂时,E1∪E2可能只包含超奇异曲线。在奇数哈希对的情况下,我们不能排除空的并集E1∪E2的可能性,但是我们给出了这种情况存在的必要条件。在附录中,Moree和Sofos使用解析数论来考虑Hasse对出现的频率,并将其与Andrica关于连续素数之间差异的猜想联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elliptic curves over Hasse pairs
We call a pair of distinct prime powers (q1,q2)=(p1a1,p2a2) a Hasse pair if |q1q2|1. For such pairs, we study the relation between the set E1 of isomorphism classes of elliptic curves defined over Fq1 with q2 points, and the set E2 of isomorphism classes of elliptic curves over Fq2 with q1 points. When both families Ei contain only ordinary elliptic curves, we prove that their isogeny graphs are isomorphic. When supersingular curves are involved, we describe which curves might belong to these sets. We also show that if both the qi's are odd and E1E2, then E1E2 always contains an ordinary elliptic curve. Conversely, if q1 is even, then E1E2 may contain only supersingular curves precisely when q2 is a given power of a Fermat or a Mersenne prime. In the case of odd Hasse pairs, we could not rule out the possibility of an empty union E1E2, but we give necessary conditions for such a case to exist. In an appendix, Moree and Sofos consider how frequently Hasse pairs occur using analytic number theory, making a connection with Andrica's conjecture on the difference between consecutive primes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信