Journal of Number Theory最新文献

筛选
英文 中文
Infinitude of the zeros of the Lerch zeta function on the half plane ℜ(s)>1 半平面上lach zeta函数零点的无穷大
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-09-23 DOI: 10.1016/j.jnt.2025.08.019
Biswajyoti Saha , Dhananjaya Sahu
{"title":"Infinitude of the zeros of the Lerch zeta function on the half plane ℜ(s)>1","authors":"Biswajyoti Saha ,&nbsp;Dhananjaya Sahu","doi":"10.1016/j.jnt.2025.08.019","DOIUrl":"10.1016/j.jnt.2025.08.019","url":null,"abstract":"<div><div>For <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, the zeros of the Hurwitz zeta function <span><math><mi>ζ</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>a</mi><mo>)</mo><mo>:</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub><msup><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mi>a</mi><mo>)</mo></mrow><mrow><mo>−</mo><mi>s</mi></mrow></msup></math></span> have interesting features. There are no zeros in the half plane <span><math><mo>ℜ</mo><mo>(</mo><mi>s</mi><mo>)</mo><mo>≥</mo><mn>1</mn><mo>+</mo><mi>a</mi></math></span>, whereas there are infinitely many zeros in the strip <span><math><mn>1</mn><mo>&lt;</mo><mo>ℜ</mo><mo>(</mo><mi>s</mi><mo>)</mo><mo>&lt;</mo><mn>1</mn><mo>+</mo><mi>a</mi></math></span>, provided <span><math><mi>a</mi><mo>≠</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>1</mn></math></span>. The existence of these infinitely many zeros was first proved by Davenport and Heilbronn for rational and transcendental values of <em>a</em> and then by Cassels for algebraic irrational values of <em>a</em>. In this article, we consider the analogous question for the zeros of the cognate Lerch zeta function <span><math><msub><mrow><mi>ζ</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>a</mi><mo>)</mo><mo>:</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub><msup><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mi>a</mi><mo>)</mo></mrow><mrow><mo>−</mo><mi>s</mi></mrow></msup></math></span>, where <em>z</em> is a complex number of unit modulus. When <em>z</em> is a root of unity, the question can be answered using a theorem of Zaghloul, which is an extension of a work of Chatterjee and Gun. In the general case, we need to further extend the method of Chatterjee and Gun.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 506-518"},"PeriodicalIF":0.7,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145220656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An extension of smooth numbers: Multiple dense divisibility 光滑数的推广:多重稠密可整除性
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-09-23 DOI: 10.1016/j.jnt.2025.08.013
Garo Sarajian , Andreas Weingartner
{"title":"An extension of smooth numbers: Multiple dense divisibility","authors":"Garo Sarajian ,&nbsp;Andreas Weingartner","doi":"10.1016/j.jnt.2025.08.013","DOIUrl":"10.1016/j.jnt.2025.08.013","url":null,"abstract":"<div><div>The <em>i</em>-tuply <em>y</em>-densely divisible numbers were introduced by a Polymath project, as a weaker condition on the moduli than <em>y</em>-smoothness, in distribution estimates for primes in arithmetic progressions. We obtain the order of magnitude of the count of these integers up to <em>x</em>, uniformly in <em>x</em> and <em>y</em>, for every fixed natural number <em>i</em>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 278-317"},"PeriodicalIF":0.7,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145158520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Torsion of rational elliptic curves over the Zp-extensions of quadratic fields 二次域zp扩展上有理椭圆曲线的扭转
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-09-08 DOI: 10.1016/j.jnt.2025.08.009
Ömer Avcı
{"title":"Torsion of rational elliptic curves over the Zp-extensions of quadratic fields","authors":"Ömer Avcı","doi":"10.1016/j.jnt.2025.08.009","DOIUrl":"10.1016/j.jnt.2025.08.009","url":null,"abstract":"<div><div>Let <em>E</em> be an elliptic curve defined over <span><math><mi>Q</mi></math></span>. For a quadratic number field <em>K</em> and an odd prime number <em>p</em>, let <em>L</em> be a <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-extension of <em>K</em>. We prove that <span><math><mi>E</mi><msub><mrow><mo>(</mo><mi>L</mi><mo>)</mo></mrow><mrow><mtext>tors</mtext></mrow></msub><mo>=</mo><mi>E</mi><msub><mrow><mo>(</mo><mi>K</mi><mo>)</mo></mrow><mrow><mtext>tors</mtext></mrow></msub></math></span> when <span><math><mi>p</mi><mo>&gt;</mo><mn>5</mn></math></span>. It enables us to classify the groups that can be realized as the torsion subgroup <span><math><mi>E</mi><msub><mrow><mo>(</mo><mi>L</mi><mo>)</mo></mrow><mrow><mtext>tors</mtext></mrow></msub></math></span>, by using the classification of torsion subgroups over the quadratic fields.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 153-170"},"PeriodicalIF":0.7,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145096122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Galois theory of quadratic rational functions with periodic critical points 具有周期临界点的二次有理函数的伽罗瓦理论
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-09-08 DOI: 10.1016/j.jnt.2025.08.010
Özlem Ejder
{"title":"Galois theory of quadratic rational functions with periodic critical points","authors":"Özlem Ejder","doi":"10.1016/j.jnt.2025.08.010","DOIUrl":"10.1016/j.jnt.2025.08.010","url":null,"abstract":"<div><div>Given a number field <em>k</em>, and a quadratic rational function <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>k</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, the associated arboreal representation of the absolute Galois group of <em>k</em> is a subgroup of the automorphism group of a regular rooted binary tree. Boston and Jones conjectured that the image of such a representation for <span><math><mi>f</mi><mo>∈</mo><mi>Z</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> contains a dense set of settled elements. An automorphism is settled if the number of its orbits on the <em>n</em>th level of the tree remains small as <em>n</em> goes to infinity.</div><div>In this article, we exhibit many quadratic rational functions whose associated Arboreal Galois groups are not densely settled. These examples arise from quadratic rational functions whose critical points lie in a single periodic orbit. To prove our results, we present a detailed study of the iterated monodromy groups (IMG) of <em>f</em>, which also allows us to provide a negative answer to Jones and Levy's question regarding settled pairs.</div><div>Furthermore, we study the iterated extension <span><math><mi>k</mi><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mo>∞</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></math></span> generated by adjoining to <span><math><mi>k</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> all roots of <span><math><msup><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>t</mi></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span> for a parameter <em>t</em>. We call the intersection of <span><math><mi>k</mi><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mo>∞</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></math></span> with <span><math><mover><mrow><mi>k</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span>, the field of constants associated with <em>f</em>. When one of the two critical points of <em>f</em> is the image of the other, we show that the field of constants is contained in the cyclotomic extension of <em>k</em> generated by all 2-power roots of unity. In particular, we prove the conjecture of Ejder, Kara, and Ozman regarding the rational function <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mo>(</mo><mi>x</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></math></span>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 212-245"},"PeriodicalIF":0.7,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145096120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abelian varieties with real multiplication: Classification and isogeny classes over finite fields 具有实乘法的阿贝尔变:有限域上的分类和同系类
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-09-05 DOI: 10.1016/j.jnt.2025.08.006
Tejasi Bhatnagar , Yu Fu
{"title":"Abelian varieties with real multiplication: Classification and isogeny classes over finite fields","authors":"Tejasi Bhatnagar ,&nbsp;Yu Fu","doi":"10.1016/j.jnt.2025.08.006","DOIUrl":"10.1016/j.jnt.2025.08.006","url":null,"abstract":"<div><div>In this paper, we provide a classification of certain points on Hilbert modular varieties over finite fields under a mild assumption on Newton polygon. Furthermore, we use this characterization to prove estimates for the size of isogeny classes.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 171-190"},"PeriodicalIF":0.7,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145096123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-vanishing of a certain quantity related to the p-adic coupling of mock modular forms with newforms 仿模形式与新模形式的p进耦合关系到一定数量的不消失
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-09-05 DOI: 10.1016/j.jnt.2025.08.007
Pavel Guerzhoy
{"title":"Non-vanishing of a certain quantity related to the p-adic coupling of mock modular forms with newforms","authors":"Pavel Guerzhoy","doi":"10.1016/j.jnt.2025.08.007","DOIUrl":"10.1016/j.jnt.2025.08.007","url":null,"abstract":"<div><div>Several authors have recently proved results which express a cusp form as a <em>p</em>-adic limit of weakly holomorphic modular forms under repeated application of Atkin's <em>U</em>-operator. Initially, these results had a deficiency: one could not rule out the possibility when a certain quantity vanishes and the final result fails to be true. Later on, Ahlgren and Samart <span><span>[1]</span></span> found a method to prove the non-vanishing in question in the specific case considered by El-Guindy and Ono <span><span>[10]</span></span>. Hanson and Jameson <span><span>[15]</span></span> and (independently) Dicks <span><span>[8]</span></span> generalized this method to finitely many other cases.</div><div>In this paper, we present a different approach which allows us to prove a similar non-vanishing result for an infinite family of similar cases. Our approach also allows us to return back to the original example considered by El-Guindy and Ono <span><span>[10]</span></span>, where we calculate the (manifestly non-zero) quantity explicitly in terms of Morita's <em>p</em>-adic Γ-function.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 191-211"},"PeriodicalIF":0.7,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145096119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monodromy of elliptic logarithms: Some topological methods and effective results 椭圆对数的单一性:一些拓扑方法和有效结果
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-09-05 DOI: 10.1016/j.jnt.2025.08.008
Francesco Tropeano
{"title":"Monodromy of elliptic logarithms: Some topological methods and effective results","authors":"Francesco Tropeano","doi":"10.1016/j.jnt.2025.08.008","DOIUrl":"10.1016/j.jnt.2025.08.008","url":null,"abstract":"<div><div>We study monodromy groups associated with elliptic schemes, examining the action induced by the fundamental group of the base via analytic continuation. We develop effective methods for investigating the relative monodromy group of elliptic logarithms and present explicit constructions of loops that simultaneously have trivial action on periods and non-trivial action on logarithms. We provide a new proof that the relative monodromy group of non-torsion sections has full rank. Our results include topological methods and effective techniques for analyzing the ramification locus of sections.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 49-87"},"PeriodicalIF":0.7,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145049554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the moments of averages of Ramanujan sums 关于拉马努金和的平均矩
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-09-04 DOI: 10.1016/j.jnt.2025.08.002
Shivani Goel , M. Ram Murty
{"title":"On the moments of averages of Ramanujan sums","authors":"Shivani Goel ,&nbsp;M. Ram Murty","doi":"10.1016/j.jnt.2025.08.002","DOIUrl":"10.1016/j.jnt.2025.08.002","url":null,"abstract":"<div><div>Chan and Kumchev studied averages of the first and second moments of Ramanujan sums. In this article, we extend this investigation by estimating the higher moments of averages of Ramanujan sums using a Tauberian theorem due to La Bretèche. We also give a result for the moments of averages of Cohen-Ramanujan sums.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 987-1003"},"PeriodicalIF":0.7,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145018763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corresponding Abelian extensions of integrally equivalent number fields 积分等价数域的相应阿贝尔扩展
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-09-04 DOI: 10.1016/j.jnt.2025.08.001
Shaver Phagan
{"title":"Corresponding Abelian extensions of integrally equivalent number fields","authors":"Shaver Phagan","doi":"10.1016/j.jnt.2025.08.001","DOIUrl":"10.1016/j.jnt.2025.08.001","url":null,"abstract":"<div><div>Extensive work has been done to determine necessary and sufficient conditions for a bijective correspondence of abelian extensions of number fields to force an isomorphism of the base fields. However, explicit examples of correspondences over non-isomorphic fields are rare. Integrally equivalent number fields admit an induced correspondence of abelian extensions. Studying this correspondence using idelic class field theory and linear algebra, we show that the corresponding extensions share features similar to those of arithmetically equivalent fields, and yet they are not generally weakly Kronecker equivalent. We also extend a group cohomological result of Arapura-Katz-McReynolds-Solapurkar and present geometric and arithmetic applications.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 88-112"},"PeriodicalIF":0.7,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145060280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounds on the number of squares in recurrence sequences: y0 = b2 (I) 递归序列中平方数的界限:y0 = b2 (I)
IF 0.7 3区 数学
Journal of Number Theory Pub Date : 2025-09-04 DOI: 10.1016/j.jnt.2025.08.003
Paul M. Voutier
{"title":"Bounds on the number of squares in recurrence sequences: y0 = b2 (I)","authors":"Paul M. Voutier","doi":"10.1016/j.jnt.2025.08.003","DOIUrl":"10.1016/j.jnt.2025.08.003","url":null,"abstract":"<div><div>We continue and generalise our earlier investigations of the number of squares in binary recurrence sequences. Here we consider sequences, <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>k</mi><mo>=</mo><mo>−</mo><mo>∞</mo></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span>, arising from the solutions of generalised negative Pell equations, <span><math><msup><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>d</mi><msup><mrow><mi>Y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>c</mi></math></span>, where −<em>c</em> and <span><math><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> are any positive squares. We show that there are at most 2 distinct squares larger than an explicit lower bound in such sequences. From this result, we also show that there are at most 5 distinct squares when <span><math><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for infinitely many values of <em>b</em>, including all <span><math><mn>1</mn><mo>≤</mo><mi>b</mi><mo>≤</mo><mn>24</mn></math></span>, as well as once <em>d</em> exceeds an explicit lower bound, without any conditions on the size of such squares.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 246-270"},"PeriodicalIF":0.7,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145096118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信