Journal of Number Theory最新文献

筛选
英文 中文
Ramanujan's continued fractions of order 10 as modular functions 拉马努金的10阶连分数作为模函数
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-06-04 DOI: 10.1016/j.jnt.2025.04.001
Victor Manuel Aricheta, Russelle Guadalupe
{"title":"Ramanujan's continued fractions of order 10 as modular functions","authors":"Victor Manuel Aricheta,&nbsp;Russelle Guadalupe","doi":"10.1016/j.jnt.2025.04.001","DOIUrl":"10.1016/j.jnt.2025.04.001","url":null,"abstract":"<div><div>We explore the modularity of the continued fractions <span><math><mi>I</mi><mo>(</mo><mi>τ</mi><mo>)</mo><mo>,</mo><mi>J</mi><mo>(</mo><mi>τ</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>τ</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>τ</mi><mo>)</mo></math></span>, and <span><math><mi>U</mi><mo>(</mo><mi>τ</mi><mo>)</mo><mo>=</mo><mi>I</mi><mo>(</mo><mi>τ</mi><mo>)</mo><mo>/</mo><mi>J</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> of order 10, which are special cases of certain identities of Ramanujan. The continued fractions <span><math><mi>I</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> and <span><math><mi>J</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> were recently introduced by Rajkhowa and Saikia. We show that these continued fractions can be expressed in terms of an <em>η</em>-quotient <span><math><mi>g</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> that generates the field of all modular functions on the congruence subgroup <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mn>10</mn><mo>)</mo></math></span>. Consequently, we deduce that the modular equations for <span><math><mi>g</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> and <span><math><mi>U</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> exist at any level and derive these equations of prime levels <span><math><mi>p</mi><mo>≤</mo><mn>11</mn></math></span>. We also show that the continued fractions of order 10 can be explicitly evaluated using a singular value of <span><math><mi>g</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span>, which under certain conditions generates the Hilbert class field of an imaginary quadratic field. We employ the methods of Lee and Park to establish our results.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"278 ","pages":"Pages 214-244"},"PeriodicalIF":0.6,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144254315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weil-Barsotti formula for T-modules t模的Weil-Barsotti公式
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-06-04 DOI: 10.1016/j.jnt.2025.04.013
Dawid E. Kędzierski, Piotr Krasoń
{"title":"Weil-Barsotti formula for T-modules","authors":"Dawid E. Kędzierski,&nbsp;Piotr Krasoń","doi":"10.1016/j.jnt.2025.04.013","DOIUrl":"10.1016/j.jnt.2025.04.013","url":null,"abstract":"<div><div>In the work of M. A. Papanikolas and N. Ramachandran (2003) <span><span>[26]</span></span> the Weil-Barsotti formula for the function field case concerning <span><math><msubsup><mrow><mi>Ext</mi></mrow><mrow><mi>τ</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>E</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span> where <em>E</em> is a Drinfeld module and <em>C</em> is the Carlitz module was proved. We generalize this formula to the case where <em>E</em> is a strictly pure <strong>t</strong>-module Φ with the zero nilpotent matrix <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>Φ</mi></mrow></msub></math></span>. For such a <strong>t</strong>-module Φ we explicitly compute its dual <strong>t</strong>-module <span><math><msup><mrow><mi>Φ</mi></mrow><mrow><mo>∨</mo></mrow></msup></math></span> as well as its double dual <span><math><msup><mrow><mi>Φ</mi></mrow><mrow><mo>∨</mo><mo>∨</mo></mrow></msup></math></span>. This computation is done in a subtle way by combination of the <strong>t</strong>-reduction algorithm developed by F. Głoch, D.E. Kędzierski, P. Krasoń, [<span><span>arXiv:2408.08207</span><svg><path></path></svg></span>] <span><span>[13]</span></span> and the methods of the work of D.E. Kędzierski and P. Krasoń (2024) <span><span>[20]</span></span>. We also give a counterexample to the Weil-Barsotti formula if the nilpotent matrix <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>Φ</mi></mrow></msub></math></span> is non-zero.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"278 ","pages":"Pages 1-25"},"PeriodicalIF":0.6,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Class numbers of binary quadratic polynomials 二元二次多项式的类数
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-06-04 DOI: 10.1016/j.jnt.2025.04.012
Zichen Yang
{"title":"Class numbers of binary quadratic polynomials","authors":"Zichen Yang","doi":"10.1016/j.jnt.2025.04.012","DOIUrl":"10.1016/j.jnt.2025.04.012","url":null,"abstract":"<div><div>In this paper, we give a formula for the proper class number of a binary quadratic polynomial assuming that the conductor ideal is sufficiently divisible at dyadic places. This allows us to study the growth of the proper class numbers of totally positive binary quadratic polynomials. As an application, we prove finiteness results on totally positive binary quadratic polynomials with a fixed quadratic part and a fixed proper class number.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"278 ","pages":"Pages 26-46"},"PeriodicalIF":0.6,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on zero-density approaches for the difference between consecutive primes 关于连续素数之差的零密度方法的注释
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-06-04 DOI: 10.1016/j.jnt.2025.04.007
Valeriia Starichkova
{"title":"A note on zero-density approaches for the difference between consecutive primes","authors":"Valeriia Starichkova","doi":"10.1016/j.jnt.2025.04.007","DOIUrl":"10.1016/j.jnt.2025.04.007","url":null,"abstract":"<div><div>In this note, we generalise two results on prime numbers in short intervals. The first result is Ingham's theorem <span><span>[12]</span></span> which connects the zero-density estimates with short intervals where the prime number theorem holds, and the second result is due to Heath-Brown and Iwaniec <span><span>[9]</span></span>, which derives the weighted zero-density estimates used for obtaining the lower bound for the number of primes in short intervals. The generalised versions of these results make the connections between the zero-free regions, zero-density estimates, and the primes in short intervals more transparent. As an example, the generalisation of Ingham's theorem implies that, under the Density Hypothesis, the prime number theorem holds in <span><math><mo>[</mo><mi>x</mi><mo>−</mo><msqrt><mrow><mi>x</mi></mrow></msqrt><mi>exp</mi><mo>⁡</mo><mo>(</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn><mo>+</mo><mi>ε</mi></mrow></msup><mo>⁡</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>x</mi><mo>]</mo></math></span>, which refines upon the classic interval <span><math><mo>[</mo><mi>x</mi><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mi>ε</mi></mrow></msup><mo>,</mo><mi>x</mi><mo>]</mo></math></span>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"278 ","pages":"Pages 245-266"},"PeriodicalIF":0.6,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144254317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quadratic forms in prime variables with small off–diagonal ranks 具有小非对角线列的素数变量的二次型
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-06-04 DOI: 10.1016/j.jnt.2025.04.006
Jakub Dobrowolski
{"title":"Quadratic forms in prime variables with small off–diagonal ranks","authors":"Jakub Dobrowolski","doi":"10.1016/j.jnt.2025.04.006","DOIUrl":"10.1016/j.jnt.2025.04.006","url":null,"abstract":"<div><div>The goal of this note is to establish the limits of Zhao's <span><span>[5]</span></span> techniques for counting solutions to quadratic forms in prime variables. Zhao considered forms with rank at least 9 and showed that these equations have solutions in primes provided there are no local obstructions. We consider in detail the degenerate cases of the off–diagonal ranks 1 and 2, and improve the lower bounds of the ranks to at least 6 and 8, respectively. These results complement a recent breakthrough of Green <span><span>[1]</span></span> on the non-degenerate case of rank 8.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"278 ","pages":"Pages 527-546"},"PeriodicalIF":0.6,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144272597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proofs of four conjectures of Ballantine, Feigon and Merca on linear inequalities of partitions with odd parts balantine、Feigon和Merca关于奇部分区线性不等式的四个猜想的证明
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-05-14 DOI: 10.1016/j.jnt.2025.03.014
Olivia X.M. Yao
{"title":"Proofs of four conjectures of Ballantine, Feigon and Merca on linear inequalities of partitions with odd parts","authors":"Olivia X.M. Yao","doi":"10.1016/j.jnt.2025.03.014","DOIUrl":"10.1016/j.jnt.2025.03.014","url":null,"abstract":"<div><div>In their seminal work, Andrews and Merca studied the truncated version of Euler's pentagonal number theorem and deduced an infinite family of linear inequalities for ordinary partition function. The work of Andrews and Merca opened up the study of truncated theta series and linear inequalities for certain restricted partition functions and many articles followed. Recently, Ballantine and Feigon, and Merca posed four conjectures on linear inequalities for partitions with odd parts. In this paper, we confirm those conjectures based on a classical result contributed to Pólya and Szegő.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"277 ","pages":"Pages 344-368"},"PeriodicalIF":0.6,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144134733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hecke relations for eta multipliers and congruences for higher-order smallest parts functions 乘子的Hecke关系和高阶最小部函数的同余
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-05-13 DOI: 10.1016/j.jnt.2025.03.006
Clayton Williams
{"title":"Hecke relations for eta multipliers and congruences for higher-order smallest parts functions","authors":"Clayton Williams","doi":"10.1016/j.jnt.2025.03.006","DOIUrl":"10.1016/j.jnt.2025.03.006","url":null,"abstract":"<div><div>We derive identities from Hecke operators acting on a family of Eisenstein-eta quotients, giving explicit equalities relating the coefficients of these quotients. From these equalities we derive congruences for the coefficients of these Eisenstein-eta quotients modulo powers of primes. As an application we derive systematic congruences for several higher-order smallest parts functions modulo prime powers, resolving a question of Garvan for these cases. We also relate moments of cranks and ranks to the partition function modulo prime powers. Some of our results strengthen and generalize those of a 2023 paper by Wang and Yang.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"277 ","pages":"Pages 325-343"},"PeriodicalIF":0.6,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144116414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the number of zeros of L−functions attached to cusp forms of half-integral weight 半积分权值的尖形上的L−函数的零点数
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-05-09 DOI: 10.1016/j.jnt.2025.02.014
Pedro Ribeiro
{"title":"On the number of zeros of L−functions attached to cusp forms of half-integral weight","authors":"Pedro Ribeiro","doi":"10.1016/j.jnt.2025.02.014","DOIUrl":"10.1016/j.jnt.2025.02.014","url":null,"abstract":"<div><div>Meher et al. (2019) <span><span>[21]</span></span> have recently established that <em>L</em>−functions attached to certain cusp forms of half-integral weight have infinitely many zeros on the critical line. Kim (2023) <span><span>[18]</span></span> obtained analogous results for <em>L</em>−functions attached to cusp forms twisted by an additive character <span><math><mi>e</mi><mrow><mo>(</mo><mfrac><mrow><mi>p</mi></mrow><mrow><mi>q</mi></mrow></mfrac><mi>n</mi><mo>)</mo></mrow></math></span>, <span><math><mfrac><mrow><mi>p</mi></mrow><mrow><mi>q</mi></mrow></mfrac><mo>∈</mo><mi>Q</mi></math></span>. We extend the results of these authors by giving a lower bound for the number of such zeros.</div><div>We start by developing a variant of a method of de la Vallée Poussin which seems to have interest as it avoids the evaluation of exponential sums. We finish the paper with an improvement of our first estimate by using Lekkerkerker's variant of the Hardy-Littlewood method.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"278 ","pages":"Pages 622-668"},"PeriodicalIF":0.6,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144321680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upper bounds for the lowest first zero in families of cuspidal newforms 尖形新形科中最低首零的上界
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-05-09 DOI: 10.1016/j.jnt.2025.02.012
Palak Arora , Glenn Bruda , Bruce Fang , Raul Marquez , Steven J. Miller , Beni Prapashtica , Vismay Sharan , Daeyoung Son , Xueyiming Tang , Saad Waheed
{"title":"Upper bounds for the lowest first zero in families of cuspidal newforms","authors":"Palak Arora ,&nbsp;Glenn Bruda ,&nbsp;Bruce Fang ,&nbsp;Raul Marquez ,&nbsp;Steven J. Miller ,&nbsp;Beni Prapashtica ,&nbsp;Vismay Sharan ,&nbsp;Daeyoung Son ,&nbsp;Xueyiming Tang ,&nbsp;Saad Waheed","doi":"10.1016/j.jnt.2025.02.012","DOIUrl":"10.1016/j.jnt.2025.02.012","url":null,"abstract":"<div><div>Assuming the Generalized Riemann Hypothesis, the non-trivial zeros of <em>L</em>-functions lie on the critical line with the real part 1/2. We find an upper bound of the lowest first zero in families of even cuspidal newforms of prime level tending to infinity. We obtain explicit bounds using the <em>n</em>-level densities and results towards the Katz-Sarnak density conjecture. We prove that as the level tends to infinity, there is at least one form with a normalized zero within 0.218503 of the average spacing. We also obtain the first-ever bounds on the percentage of forms in these families with a fixed number of zeros within a small distance near the central point.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"277 ","pages":"Pages 262-289"},"PeriodicalIF":0.6,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144069562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distribution of cycles in supersingular ℓ-isogeny graphs 超奇异等构图中环的分布
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-05-07 DOI: 10.1016/j.jnt.2025.03.013
Eli Orvis
{"title":"Distribution of cycles in supersingular ℓ-isogeny graphs","authors":"Eli Orvis","doi":"10.1016/j.jnt.2025.03.013","DOIUrl":"10.1016/j.jnt.2025.03.013","url":null,"abstract":"<div><div>Recent work by Arpin et al. (2024) <span><span>[2]</span></span> counted the number of cycles of length <em>r</em> in supersingular <em>ℓ</em>-isogeny graphs. In this paper, we extend this work to count the number of cycles that occur along the spine. We provide formulas for both the number of such cycles, and the average number as <span><math><mi>p</mi><mo>→</mo><mo>∞</mo></math></span>, with <em>ℓ</em> and <em>r</em> fixed. In particular, we show that when <em>r</em> is not a power of 2, cycles of length <em>r</em> are disproportionately likely to occur along the spine. We provide experimental evidence that this result holds in the case that <em>r</em> is a power of 2 as well.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"277 ","pages":"Pages 236-261"},"PeriodicalIF":0.6,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144069561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信