拉马努金的10阶连分数作为模函数

IF 0.6 3区 数学 Q3 MATHEMATICS
Victor Manuel Aricheta, Russelle Guadalupe
{"title":"拉马努金的10阶连分数作为模函数","authors":"Victor Manuel Aricheta,&nbsp;Russelle Guadalupe","doi":"10.1016/j.jnt.2025.04.001","DOIUrl":null,"url":null,"abstract":"<div><div>We explore the modularity of the continued fractions <span><math><mi>I</mi><mo>(</mo><mi>τ</mi><mo>)</mo><mo>,</mo><mi>J</mi><mo>(</mo><mi>τ</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>τ</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>τ</mi><mo>)</mo></math></span>, and <span><math><mi>U</mi><mo>(</mo><mi>τ</mi><mo>)</mo><mo>=</mo><mi>I</mi><mo>(</mo><mi>τ</mi><mo>)</mo><mo>/</mo><mi>J</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> of order 10, which are special cases of certain identities of Ramanujan. The continued fractions <span><math><mi>I</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> and <span><math><mi>J</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> were recently introduced by Rajkhowa and Saikia. We show that these continued fractions can be expressed in terms of an <em>η</em>-quotient <span><math><mi>g</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> that generates the field of all modular functions on the congruence subgroup <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mn>10</mn><mo>)</mo></math></span>. Consequently, we deduce that the modular equations for <span><math><mi>g</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> and <span><math><mi>U</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> exist at any level and derive these equations of prime levels <span><math><mi>p</mi><mo>≤</mo><mn>11</mn></math></span>. We also show that the continued fractions of order 10 can be explicitly evaluated using a singular value of <span><math><mi>g</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span>, which under certain conditions generates the Hilbert class field of an imaginary quadratic field. We employ the methods of Lee and Park to establish our results.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"278 ","pages":"Pages 214-244"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ramanujan's continued fractions of order 10 as modular functions\",\"authors\":\"Victor Manuel Aricheta,&nbsp;Russelle Guadalupe\",\"doi\":\"10.1016/j.jnt.2025.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We explore the modularity of the continued fractions <span><math><mi>I</mi><mo>(</mo><mi>τ</mi><mo>)</mo><mo>,</mo><mi>J</mi><mo>(</mo><mi>τ</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>τ</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>τ</mi><mo>)</mo></math></span>, and <span><math><mi>U</mi><mo>(</mo><mi>τ</mi><mo>)</mo><mo>=</mo><mi>I</mi><mo>(</mo><mi>τ</mi><mo>)</mo><mo>/</mo><mi>J</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> of order 10, which are special cases of certain identities of Ramanujan. The continued fractions <span><math><mi>I</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> and <span><math><mi>J</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> were recently introduced by Rajkhowa and Saikia. We show that these continued fractions can be expressed in terms of an <em>η</em>-quotient <span><math><mi>g</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> that generates the field of all modular functions on the congruence subgroup <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mn>10</mn><mo>)</mo></math></span>. Consequently, we deduce that the modular equations for <span><math><mi>g</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> and <span><math><mi>U</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> exist at any level and derive these equations of prime levels <span><math><mi>p</mi><mo>≤</mo><mn>11</mn></math></span>. We also show that the continued fractions of order 10 can be explicitly evaluated using a singular value of <span><math><mi>g</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span>, which under certain conditions generates the Hilbert class field of an imaginary quadratic field. We employ the methods of Lee and Park to establish our results.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"278 \",\"pages\":\"Pages 214-244\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25001428\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25001428","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了10阶连分数I(τ)、J(τ)、T1(τ)、T2(τ)和U(τ)=I(τ)/J(τ)的模性,它们是某些Ramanujan恒等式的特殊情况。连分数I(τ)和J(τ)是最近由Rajkhowa和Saikia引入的。我们证明了这些连分数可以用η商g(τ)来表示,它产生了同余子群Γ0(10)上所有模函数的域。因此,我们推导出g(τ)和U(τ)的模方程在任何水平上都存在,并推导出这些素数水平p≤11的方程。我们还证明了用g(τ)的奇异值可以显式地求出10阶的连分数,它在一定条件下产生虚二次域的Hilbert类域。我们采用李和朴的方法来确定我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ramanujan's continued fractions of order 10 as modular functions
We explore the modularity of the continued fractions I(τ),J(τ),T1(τ),T2(τ), and U(τ)=I(τ)/J(τ) of order 10, which are special cases of certain identities of Ramanujan. The continued fractions I(τ) and J(τ) were recently introduced by Rajkhowa and Saikia. We show that these continued fractions can be expressed in terms of an η-quotient g(τ) that generates the field of all modular functions on the congruence subgroup Γ0(10). Consequently, we deduce that the modular equations for g(τ) and U(τ) exist at any level and derive these equations of prime levels p11. We also show that the continued fractions of order 10 can be explicitly evaluated using a singular value of g(τ), which under certain conditions generates the Hilbert class field of an imaginary quadratic field. We employ the methods of Lee and Park to establish our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信