关于Brauer群的p-初级扭转的注释

IF 0.6 3区 数学 Q3 MATHEMATICS
Yuan Yang
{"title":"关于Brauer群的p-初级扭转的注释","authors":"Yuan Yang","doi":"10.1016/j.jnt.2025.06.003","DOIUrl":null,"url":null,"abstract":"<div><div>For a smooth and proper variety <em>X</em> over an algebraically closed field <em>k</em> of characteristic <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span>, the group <span><math><mrow><mi>Br</mi></mrow><mo>(</mo><mi>X</mi><mo>)</mo><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>]</mo></math></span> is a direct sum of finitely many copies of <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>/</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>(</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>]</mo></math></span>, an abelian group of finite exponent. The latter is an extension of a finite group <em>J</em> by the group of <em>k</em>-points of a connected commutative unipotent algebraic group <em>U</em>. In this paper we show that (1) if <em>X</em> is ordinary, then <span><math><mi>U</mi><mo>=</mo><mn>0</mn></math></span>; (2) if <em>X</em> is a surface, then <em>J</em> is the Pontryagin dual of <span><math><mrow><mi>NS</mi></mrow><mo>(</mo><mi>X</mi><mo>)</mo><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>]</mo></math></span>; (3) if <em>X</em> is an abelian variety, then <span><math><mi>J</mi><mo>=</mo><mn>0</mn></math></span>. Using Crew's formula and Ekedahl's inequality, we compute the dimension of <em>U</em> for surfaces and for abelian 3-folds. We show that, if <em>X</em> is ordinary, then the unipotent subgroup of <span><math><mrow><mi>Br</mi></mrow><mo>(</mo><mi>X</mi><mo>×</mo><mi>Y</mi><mo>)</mo></math></span> is isomorphic to the unipotent subgroup of <span><math><mrow><mi>Br</mi></mrow><mo>(</mo><mi>Y</mi><mo>)</mo></math></span>. Generalizing a result of Ogus, we give a criterion for the injectivity of the canonical map from flat to crystalline cohomology in degree 2.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 184-215"},"PeriodicalIF":0.6000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on p-primary torsion of the Brauer group\",\"authors\":\"Yuan Yang\",\"doi\":\"10.1016/j.jnt.2025.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a smooth and proper variety <em>X</em> over an algebraically closed field <em>k</em> of characteristic <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span>, the group <span><math><mrow><mi>Br</mi></mrow><mo>(</mo><mi>X</mi><mo>)</mo><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>]</mo></math></span> is a direct sum of finitely many copies of <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>/</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>(</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>]</mo></math></span>, an abelian group of finite exponent. The latter is an extension of a finite group <em>J</em> by the group of <em>k</em>-points of a connected commutative unipotent algebraic group <em>U</em>. In this paper we show that (1) if <em>X</em> is ordinary, then <span><math><mi>U</mi><mo>=</mo><mn>0</mn></math></span>; (2) if <em>X</em> is a surface, then <em>J</em> is the Pontryagin dual of <span><math><mrow><mi>NS</mi></mrow><mo>(</mo><mi>X</mi><mo>)</mo><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>]</mo></math></span>; (3) if <em>X</em> is an abelian variety, then <span><math><mi>J</mi><mo>=</mo><mn>0</mn></math></span>. Using Crew's formula and Ekedahl's inequality, we compute the dimension of <em>U</em> for surfaces and for abelian 3-folds. We show that, if <em>X</em> is ordinary, then the unipotent subgroup of <span><math><mrow><mi>Br</mi></mrow><mo>(</mo><mi>X</mi><mo>×</mo><mi>Y</mi><mo>)</mo></math></span> is isomorphic to the unipotent subgroup of <span><math><mrow><mi>Br</mi></mrow><mo>(</mo><mi>Y</mi><mo>)</mo></math></span>. Generalizing a result of Ogus, we give a criterion for the injectivity of the canonical map from flat to crystalline cohomology in degree 2.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"279 \",\"pages\":\"Pages 184-215\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25001878\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25001878","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于特征为p>;0的代数闭域k上的光滑固有簇X,群Br(X)[p∞]是Qp/Zp与有限个有限指数阿贝尔群H3(X,Zp(1))[p∞]的直接和。后者是有限群J被连通可交换单幂代数群U的k点群所扩展。本文证明了(1)如果X是普通的,则U=0;(2)如果X是一个曲面,则J是NS(X)[p∞]的Pontryagin对偶;(3)如果X是一个阿贝尔变量,则J=0。利用Crew公式和Ekedahl不等式,计算了曲面和阿贝尔三折曲面的U维数。证明了如果X是普通的,则Br(X×Y)的单幂子群与Br(Y)的单幂子群是同构的。推广Ogus的结果,给出了2次平面上同到结晶上同正则映射注入性的判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remarks on p-primary torsion of the Brauer group
For a smooth and proper variety X over an algebraically closed field k of characteristic p>0, the group Br(X)[p] is a direct sum of finitely many copies of Qp/Zp and H3(X,Zp(1))[p], an abelian group of finite exponent. The latter is an extension of a finite group J by the group of k-points of a connected commutative unipotent algebraic group U. In this paper we show that (1) if X is ordinary, then U=0; (2) if X is a surface, then J is the Pontryagin dual of NS(X)[p]; (3) if X is an abelian variety, then J=0. Using Crew's formula and Ekedahl's inequality, we compute the dimension of U for surfaces and for abelian 3-folds. We show that, if X is ordinary, then the unipotent subgroup of Br(X×Y) is isomorphic to the unipotent subgroup of Br(Y). Generalizing a result of Ogus, we give a criterion for the injectivity of the canonical map from flat to crystalline cohomology in degree 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信