Journal of Number Theory最新文献

筛选
英文 中文
On prime numbers and quadratic forms represented by positive-definite, primitive quadratic forms 论素数和用正定、原始二次型表示的二次型
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-02-27 DOI: 10.1016/j.jnt.2024.12.014
Yves Martin
{"title":"On prime numbers and quadratic forms represented by positive-definite, primitive quadratic forms","authors":"Yves Martin","doi":"10.1016/j.jnt.2024.12.014","DOIUrl":"10.1016/j.jnt.2024.12.014","url":null,"abstract":"<div><div>In this note we show that every positive-definite, integral, primitive, <em>n</em>-ary quadratic form with <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span> represents infinitely many prime numbers and infinitely many primitive, non-equivalent, <em>m</em>-ary quadratic forms for each <span><math><mn>2</mn><mo>≤</mo><mi>m</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. We do so via an inductive argument which only requires to know the statement for <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span> (proved by H. Weber in 1882), and elementary linear algebra. The result on the representation of prime numbers by <em>n</em>-ary quadratic forms for arbitrary <span><math><mi>n</mi><mo>&gt;</mo><mn>2</mn></math></span> can be deduced from theorems already known, but the proof below is more direct and seems to be new in the literature. As an application we establish a non-vanishing result for Fourier-Jacobi coefficients of Siegel modular forms of any degree, level and Dirichlet character, subject to a condition on the conductor of the character.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"274 ","pages":"Pages 26-36"},"PeriodicalIF":0.6,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143520773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniform bounds for Kloosterman sums of half-integral weight, same-sign case 半积分权值的Kloosterman和的统一界,同号情况
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-02-27 DOI: 10.1016/j.jnt.2024.11.012
Qihang Sun
{"title":"Uniform bounds for Kloosterman sums of half-integral weight, same-sign case","authors":"Qihang Sun","doi":"10.1016/j.jnt.2024.11.012","DOIUrl":"10.1016/j.jnt.2024.11.012","url":null,"abstract":"<div><div>In the previous paper <span><span>[Sun24]</span></span>, the author proved a uniform bound for sums of half-integral weight Kloosterman sums. This bound was applied to prove an exact formula for partitions of rank modulo 3. That uniform estimate provides a more precise bound for a certain class of multipliers compared to the 1983 result by Goldfeld and Sarnak and generalizes the 2009 result from Sarnak and Tsimerman to the half-integral weight case. However, the author only considered the case when the parameters satisfied <span><math><mover><mrow><mi>m</mi></mrow><mrow><mo>˜</mo></mrow></mover><mover><mrow><mi>n</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>&lt;</mo><mn>0</mn></math></span>. In this paper, we prove the same uniform bound when <span><math><mover><mrow><mi>m</mi></mrow><mrow><mo>˜</mo></mrow></mover><mover><mrow><mi>n</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>&gt;</mo><mn>0</mn></math></span> for further applications.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"274 ","pages":"Pages 104-139"},"PeriodicalIF":0.6,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143548347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Mahler measure of a family of polynomials with arbitrarily many variables 具有任意多变量的多项式族的马勒测度
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-02-26 DOI: 10.1016/j.jnt.2024.11.011
Siva Sankar Nair
{"title":"The Mahler measure of a family of polynomials with arbitrarily many variables","authors":"Siva Sankar Nair","doi":"10.1016/j.jnt.2024.11.011","DOIUrl":"10.1016/j.jnt.2024.11.011","url":null,"abstract":"<div><div>We present an exact formula for the Mahler measure of an infinite family of polynomials with arbitrarily many variables. The formula is obtained by manipulating the integral defining the Mahler measure using certain transformations, followed by an iterative process that reduces this computation to the evaluation of certain polylogarithm functions at sixth roots of unity. This yields values of the Riemann zeta function and the Dirichlet <em>L</em>-function associated to the character of conductor 3.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"275 ","pages":"Pages 214-272"},"PeriodicalIF":0.6,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143637189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relative sizes of iterated sumsets 迭代集合的相对大小
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-02-25 DOI: 10.1016/j.jnt.2025.01.007
Noah Kravitz
{"title":"Relative sizes of iterated sumsets","authors":"Noah Kravitz","doi":"10.1016/j.jnt.2025.01.007","DOIUrl":"10.1016/j.jnt.2025.01.007","url":null,"abstract":"<div><div>Let <em>hA</em> denote the <em>h</em>-fold sumset of a subset <em>A</em> of an abelian group. Resolving a problem of Nathanson, we show that for any prescribed permutations <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, there exist finite subsets <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊆</mo><mi>Z</mi></math></span> such that for each <span><math><mn>1</mn><mo>≤</mo><mi>h</mi><mo>≤</mo><mi>H</mi></math></span>, the relative order of the quantities <span><math><mo>|</mo><mi>h</mi><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><mo>,</mo><mo>…</mo><mo>,</mo><mo>|</mo><mi>h</mi><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>|</mo></math></span> is given by <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>. We also establish extensions where <span><math><mi>Z</mi></math></span> is replaced by any other infinite abelian group or where one prescribes some equalities (not only inequalities) among the sumset sizes.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"272 ","pages":"Pages 113-128"},"PeriodicalIF":0.6,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143510120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upper bounds on large deviations of Dirichlet L-functions in the q-aspect Dirichlet l -函数在q方面的大偏差的上界
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-02-24 DOI: 10.1016/j.jnt.2025.01.009
Louis-Pierre Arguin, Nathan Creighton
{"title":"Upper bounds on large deviations of Dirichlet L-functions in the q-aspect","authors":"Louis-Pierre Arguin,&nbsp;Nathan Creighton","doi":"10.1016/j.jnt.2025.01.009","DOIUrl":"10.1016/j.jnt.2025.01.009","url":null,"abstract":"<div><div>We prove a result on the large deviations of the central values of even primitive Dirichlet <em>L</em>-functions with a given modulus. For <span><math><mi>V</mi><mo>∼</mo><mi>α</mi><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>q</mi></math></span> with <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn></math></span>, we show that<span><span><span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>φ</mi><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mfrac><mi>#</mi><mrow><mo>{</mo><mi>χ</mi><mtext> even, primitive mod </mtext><mi>q</mi><mo>:</mo><mi>log</mi><mo>⁡</mo><mrow><mo>|</mo><mi>L</mi><mrow><mo>(</mo><mi>χ</mi><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow><mo>|</mo></mrow><mo>&gt;</mo><mi>V</mi><mo>}</mo></mrow><mspace></mspace><mo>≪</mo><mfrac><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mfrac><mrow><msup><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>q</mi></mrow></mfrac></mrow></msup></mrow><mrow><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>q</mi></mrow></msqrt></mrow></mfrac><mo>.</mo></math></span></span></span> This yields the sharp upper bound for the fractional moments of central values of Dirichlet <em>L</em>-functions proved by Gao, upon noting that the number of even, primitive characters with modulus <em>q</em> is <span><math><mfrac><mrow><mi>φ</mi><mo>(</mo><mi>q</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>. The proof is an adaptation to the <em>q</em>-aspect of the recursive scheme developed by Arguin, Bourgade and Radziwiłł for the local maxima of the Riemann zeta function, and applied by Arguin and Bailey to the large deviations in the <em>t</em>-aspect. We go further and get bounds on the case where <span><math><mi>V</mi><mo>=</mo><mi>o</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>q</mi><mo>)</mo></math></span>. These bounds are not expected to be sharp, but the discrepancy from the Central Limit Theorem estimate grows very slowly with <em>q</em>. The method involves a formula for the twisted mollified second moment of central values of Dirichlet <em>L</em>-functions, building on the work of Iwaniec and Sarnak.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"273 ","pages":"Pages 96-158"},"PeriodicalIF":0.6,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143511909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Square patterns in dynamical orbits 动态轨道中的方形图案
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-02-21 DOI: 10.1016/j.jnt.2024.12.004
Vefa Goksel , Giacomo Micheli
{"title":"Square patterns in dynamical orbits","authors":"Vefa Goksel ,&nbsp;Giacomo Micheli","doi":"10.1016/j.jnt.2024.12.004","DOIUrl":"10.1016/j.jnt.2024.12.004","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;em&gt;q&lt;/em&gt; be an odd prime power. Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; be a polynomial having degree at least 2, &lt;span&gt;&lt;math&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, and denote by &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; the &lt;em&gt;n&lt;/em&gt;-th iteration of &lt;em&gt;f&lt;/em&gt;. Let &lt;em&gt;χ&lt;/em&gt; be the quadratic character of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; the forward orbit of &lt;em&gt;a&lt;/em&gt; under iteration by &lt;em&gt;f&lt;/em&gt;. Suppose that the sequence &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is periodic, and &lt;em&gt;m&lt;/em&gt; is its period. Assuming a mild and generic condition on &lt;em&gt;f&lt;/em&gt;, we show that, up to a constant depending on &lt;em&gt;d&lt;/em&gt;, &lt;em&gt;m&lt;/em&gt; can be bounded from below by &lt;span&gt;&lt;math&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;log&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;log&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; as &lt;em&gt;q&lt;/em&gt; grows. More informally, we prove that the period of the appearance of squares in an orbit of an element provides an upper bound for the size of the orbit itself. Using a similar method, we can also prove that, up to a constant depending on &lt;em&gt;d&lt;/em&gt;, we cannot have more than &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;log&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;log&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; consecutive squares or non-squares in the forward orbit of &lt;em&gt;a&lt;/em&gt;. In addition, using geometric tools from global function field theory such as abc theorem, we provide a classification of all polynomials for which our generic condition does not hold, making the results effective. Interestingly enough, our condition is purely geometrical, while our final results are completely arithmetical. As a corollary, this paper removes most of the hypothesis of (Ostafe, Shparlinski. Proceedings of the American Mathematical Society 138.8 (2010)), most notably extending the results to an","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"272 ","pages":"Pages 129-146"},"PeriodicalIF":0.6,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143512223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An asymptotic formula involving the triple divisor function 一个包含三重因子函数的渐近公式
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-02-18 DOI: 10.1016/j.jnt.2025.01.011
Guangwei Hu , Chenran Xu
{"title":"An asymptotic formula involving the triple divisor function","authors":"Guangwei Hu ,&nbsp;Chenran Xu","doi":"10.1016/j.jnt.2025.01.011","DOIUrl":"10.1016/j.jnt.2025.01.011","url":null,"abstract":"<div><div>Suppose <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denotes the classical triple divisor function. Let <span><math><mi>Q</mi><mo>(</mo><mrow><mi>x</mi><mo>)</mo></mrow></math></span> be a positive definite integral quadratic form, and <span><math><mi>r</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>Q</mi><mo>)</mo></math></span> denote the number of representations of <em>n</em> by the quadratic form <em>Q</em>. In this paper, we will establish an asymptotic formula of the summation<span><span><span><math><munder><mo>∑</mo><mrow><mi>n</mi><mo>≤</mo><mi>X</mi></mrow></munder><msub><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>+</mo><mi>h</mi><mo>)</mo><mi>r</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>Q</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <em>h</em> is a positive integer satisfying <span><math><mi>h</mi><mo>≤</mo><mi>H</mi><mo>≪</mo><msup><mrow><mi>X</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>ε</mi></mrow></msup></math></span>. Our result breaks through the trivial bound of the above summation and obtains the power saving in <em>O</em>-term.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"271 ","pages":"Pages 328-347"},"PeriodicalIF":0.6,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143445484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some improvements on the Davenport-Heilbronn method 对Davenport-Heilbronn方法的改进
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-02-18 DOI: 10.1016/j.jnt.2025.01.013
Konstantinos Kydoniatis
{"title":"Some improvements on the Davenport-Heilbronn method","authors":"Konstantinos Kydoniatis","doi":"10.1016/j.jnt.2025.01.013","DOIUrl":"10.1016/j.jnt.2025.01.013","url":null,"abstract":"<div><div>Let <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><mi>s</mi><mo>≥</mo><mo>⌈</mo><mi>k</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>k</mi><mo>+</mo><mn>4.20032</mn><mo>)</mo><mo>⌉</mo></math></span>, and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>,</mo><mi>ω</mi><mo>∈</mo><mi>R</mi></math></span>. Assume that the <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> are non-zero, not all in rational ratio, and not all of the same sign in the case that <em>k</em> is even. Then, for any <span><math><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></math></span>, the inequality<span><span><span><math><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></msubsup><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msubsup><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>s</mi></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mo>+</mo><mi>ω</mi><mo>|</mo><mo>&lt;</mo><mi>ϵ</mi></math></span></span></span> has <span><math><mo>≫</mo><msup><mrow><mi>P</mi></mrow><mrow><mi>s</mi><mo>−</mo><mi>k</mi></mrow></msup></math></span> integer solutions with <span><math><mo>|</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>≤</mo><mi>P</mi></math></span>. Moreover the asymptotic formula for the number of smooth solutions is established assuming the same conditions hold.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"272 ","pages":"Pages 1-17"},"PeriodicalIF":0.6,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143474666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heights of rational points on Mordell curves 莫德尔曲线上有理点的高度
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-02-18 DOI: 10.1016/j.jnt.2025.01.012
Alan Zhao
{"title":"Heights of rational points on Mordell curves","authors":"Alan Zhao","doi":"10.1016/j.jnt.2025.01.012","DOIUrl":"10.1016/j.jnt.2025.01.012","url":null,"abstract":"<div><div>We conjecture a lower bound for the minimal canonical height of non-torsion rational points on a natural density 1 subset of the sextic twist family of Mordell curves. We then establish a lower bound that yields a partial result towards this conjecture.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"272 ","pages":"Pages 18-33"},"PeriodicalIF":0.6,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143474667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Negative first moment of quadratic twists of L-functions l函数的二次扭转的负一阶矩
IF 0.6 3区 数学
Journal of Number Theory Pub Date : 2025-02-18 DOI: 10.1016/j.jnt.2025.01.003
Peng Gao , Liangyi Zhao
{"title":"Negative first moment of quadratic twists of L-functions","authors":"Peng Gao ,&nbsp;Liangyi Zhao","doi":"10.1016/j.jnt.2025.01.003","DOIUrl":"10.1016/j.jnt.2025.01.003","url":null,"abstract":"<div><div>We evaluate asymptotically the negative first moment at points larger than 1/2 of the family of quadratic twists of automorphic <em>L</em>-functions using multiple Dirichlet series under the generalized Riemann hypothesis and the Ramanujan-Petersson conjecture.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"271 ","pages":"Pages 389-406"},"PeriodicalIF":0.6,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143445486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信