A Kronecker congruence relation for modular functions of higher level and genus

IF 0.7 3区 数学 Q3 MATHEMATICS
Ho Yun Jung , Ja Kyung Koo , Dong Hwa Shin
{"title":"A Kronecker congruence relation for modular functions of higher level and genus","authors":"Ho Yun Jung ,&nbsp;Ja Kyung Koo ,&nbsp;Dong Hwa Shin","doi":"10.1016/j.jnt.2025.05.011","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>j</em> be the elliptic modular function, a weakly holomorphic modular function for <span><math><msub><mrow><mi>SL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>Z</mi><mo>)</mo></math></span>. Weber showed that for each prime <em>p</em> the modular polynomial <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mspace></mspace><mi>y</mi><mo>)</mo></math></span> of <em>j</em> satisfies what is known as the Kronecker congruence relation <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mspace></mspace><mi>y</mi><mo>)</mo><mo>≡</mo><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>−</mo><mi>y</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>−</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo><mspace></mspace><mo>(</mo><mtext>mod</mtext><mspace></mspace><mi>p</mi><mi>Z</mi><mo>[</mo><mi>x</mi><mo>,</mo><mspace></mspace><mi>y</mi><mo>]</mo><mo>)</mo></math></span>. We give a generalization of this congruence applicable to certain weakly holomorphic modular functions of higher level in terms of integrality over <span><math><mi>Z</mi><mo>[</mo><mi>j</mi><mo>]</mo></math></span>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"278 ","pages":"Pages 875-892"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25001714","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let j be the elliptic modular function, a weakly holomorphic modular function for SL2(Z). Weber showed that for each prime p the modular polynomial Φp(x,y) of j satisfies what is known as the Kronecker congruence relation Φp(x,y)(xpy)(xyp)(modpZ[x,y]). We give a generalization of this congruence applicable to certain weakly holomorphic modular functions of higher level in terms of integrality over Z[j].
高阶和属模函数的Kronecker同余关系
设j为SL2(Z)的椭圆模函数,一个弱全纯模函数。Weber证明了对于每一个素数p, j的模多项式Φp(x,y)满足所谓的Kronecker同余关系Φp(x,y)≡(xp−y)(x−yp)(modpZ[x,y])。本文从Z上的完整性出发,对高阶弱全纯模函数的同余性进行了推广[j]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信