{"title":"高阶和属模函数的Kronecker同余关系","authors":"Ho Yun Jung , Ja Kyung Koo , Dong Hwa Shin","doi":"10.1016/j.jnt.2025.05.011","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>j</em> be the elliptic modular function, a weakly holomorphic modular function for <span><math><msub><mrow><mi>SL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>Z</mi><mo>)</mo></math></span>. Weber showed that for each prime <em>p</em> the modular polynomial <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mspace></mspace><mi>y</mi><mo>)</mo></math></span> of <em>j</em> satisfies what is known as the Kronecker congruence relation <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mspace></mspace><mi>y</mi><mo>)</mo><mo>≡</mo><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>−</mo><mi>y</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>−</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo><mspace></mspace><mo>(</mo><mtext>mod</mtext><mspace></mspace><mi>p</mi><mi>Z</mi><mo>[</mo><mi>x</mi><mo>,</mo><mspace></mspace><mi>y</mi><mo>]</mo><mo>)</mo></math></span>. We give a generalization of this congruence applicable to certain weakly holomorphic modular functions of higher level in terms of integrality over <span><math><mi>Z</mi><mo>[</mo><mi>j</mi><mo>]</mo></math></span>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"278 ","pages":"Pages 875-892"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Kronecker congruence relation for modular functions of higher level and genus\",\"authors\":\"Ho Yun Jung , Ja Kyung Koo , Dong Hwa Shin\",\"doi\":\"10.1016/j.jnt.2025.05.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>j</em> be the elliptic modular function, a weakly holomorphic modular function for <span><math><msub><mrow><mi>SL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>Z</mi><mo>)</mo></math></span>. Weber showed that for each prime <em>p</em> the modular polynomial <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mspace></mspace><mi>y</mi><mo>)</mo></math></span> of <em>j</em> satisfies what is known as the Kronecker congruence relation <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mspace></mspace><mi>y</mi><mo>)</mo><mo>≡</mo><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>−</mo><mi>y</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>−</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo><mspace></mspace><mo>(</mo><mtext>mod</mtext><mspace></mspace><mi>p</mi><mi>Z</mi><mo>[</mo><mi>x</mi><mo>,</mo><mspace></mspace><mi>y</mi><mo>]</mo><mo>)</mo></math></span>. We give a generalization of this congruence applicable to certain weakly holomorphic modular functions of higher level in terms of integrality over <span><math><mi>Z</mi><mo>[</mo><mi>j</mi><mo>]</mo></math></span>.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"278 \",\"pages\":\"Pages 875-892\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25001714\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25001714","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Kronecker congruence relation for modular functions of higher level and genus
Let j be the elliptic modular function, a weakly holomorphic modular function for . Weber showed that for each prime p the modular polynomial of j satisfies what is known as the Kronecker congruence relation . We give a generalization of this congruence applicable to certain weakly holomorphic modular functions of higher level in terms of integrality over .
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.