{"title":"Approximation of L-functions associated to Hecke cusp eigenforms","authors":"An Huang, Kamryn Spinelli","doi":"10.1016/j.jnt.2025.01.014","DOIUrl":null,"url":null,"abstract":"<div><div>We derive a family of approximations for L-functions of Hecke cusp eigenforms, according to a recipe first described by Matiyasevich for the Riemann xi function. We show that these approximations converge to the true L-function and point out the role of an equidistributional notion in ensuring the approximation is well-defined, and along the way we demonstrate error formulas which may be used to investigate analytic properties of the L-function and its derivatives, such as the locations and orders of zeros. Together with the Euler product expansion of the L-function, the family of approximations also encodes some of the key features of the L-function such as its functional equation. As an example, we apply this method to the L-function of the modular discriminant and demonstrate that the approximation successfully locates zeros of the L-function on the critical line. Finally, we derive via Mellin transforms a convolution-type formula which leads to precise error bounds in terms of the incomplete gamma function. This formula can be interpreted as an alternative definition for the approximation and sheds light on Matiyasevich's procedure.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"272 ","pages":"Pages 60-84"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25000381","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We derive a family of approximations for L-functions of Hecke cusp eigenforms, according to a recipe first described by Matiyasevich for the Riemann xi function. We show that these approximations converge to the true L-function and point out the role of an equidistributional notion in ensuring the approximation is well-defined, and along the way we demonstrate error formulas which may be used to investigate analytic properties of the L-function and its derivatives, such as the locations and orders of zeros. Together with the Euler product expansion of the L-function, the family of approximations also encodes some of the key features of the L-function such as its functional equation. As an example, we apply this method to the L-function of the modular discriminant and demonstrate that the approximation successfully locates zeros of the L-function on the critical line. Finally, we derive via Mellin transforms a convolution-type formula which leads to precise error bounds in terms of the incomplete gamma function. This formula can be interpreted as an alternative definition for the approximation and sheds light on Matiyasevich's procedure.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.