四个多边形数的和:精确的公式

IF 0.6 3区 数学 Q3 MATHEMATICS
Jialin Li, Haowu Wang
{"title":"四个多边形数的和:精确的公式","authors":"Jialin Li,&nbsp;Haowu Wang","doi":"10.1016/j.jnt.2025.01.016","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we give unified formulas for the numbers of representations of positive integers as sums of four generalized <em>m</em>-gonal numbers, and as restricted sums of four squares under a linear condition, respectively. These formulas are given as <span><math><mi>Z</mi></math></span>-linear combinations of Hurwitz class numbers. As applications, we prove several Zhi-Wei Sun's conjectures. As by-products, we obtain formulas for expressing the Fourier coefficients of <span><math><mi>ϑ</mi><msup><mrow><mo>(</mo><mi>τ</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow><mrow><mn>4</mn></mrow></msup></math></span>, <span><math><mi>η</mi><msup><mrow><mo>(</mo><mi>τ</mi><mo>)</mo></mrow><mrow><mn>12</mn></mrow></msup></math></span>, <span><math><mi>η</mi><msup><mrow><mo>(</mo><mi>τ</mi><mo>)</mo></mrow><mrow><mn>4</mn></mrow></msup></math></span> and <span><math><mi>η</mi><msup><mrow><mo>(</mo><mi>τ</mi><mo>)</mo></mrow><mrow><mn>8</mn></mrow></msup><mi>η</mi><msup><mrow><mo>(</mo><mn>2</mn><mi>τ</mi><mo>)</mo></mrow><mrow><mn>8</mn></mrow></msup></math></span> in terms of Hurwitz class numbers, respectively. The proof is based on the theory of Jacobi forms.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"271 ","pages":"Pages 407-422"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sums of four polygonal numbers: Precise formulas\",\"authors\":\"Jialin Li,&nbsp;Haowu Wang\",\"doi\":\"10.1016/j.jnt.2025.01.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we give unified formulas for the numbers of representations of positive integers as sums of four generalized <em>m</em>-gonal numbers, and as restricted sums of four squares under a linear condition, respectively. These formulas are given as <span><math><mi>Z</mi></math></span>-linear combinations of Hurwitz class numbers. As applications, we prove several Zhi-Wei Sun's conjectures. As by-products, we obtain formulas for expressing the Fourier coefficients of <span><math><mi>ϑ</mi><msup><mrow><mo>(</mo><mi>τ</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow><mrow><mn>4</mn></mrow></msup></math></span>, <span><math><mi>η</mi><msup><mrow><mo>(</mo><mi>τ</mi><mo>)</mo></mrow><mrow><mn>12</mn></mrow></msup></math></span>, <span><math><mi>η</mi><msup><mrow><mo>(</mo><mi>τ</mi><mo>)</mo></mrow><mrow><mn>4</mn></mrow></msup></math></span> and <span><math><mi>η</mi><msup><mrow><mo>(</mo><mi>τ</mi><mo>)</mo></mrow><mrow><mn>8</mn></mrow></msup><mi>η</mi><msup><mrow><mo>(</mo><mn>2</mn><mi>τ</mi><mo>)</mo></mrow><mrow><mn>8</mn></mrow></msup></math></span> in terms of Hurwitz class numbers, respectively. The proof is based on the theory of Jacobi forms.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"271 \",\"pages\":\"Pages 407-422\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X2500040X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X2500040X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文分别给出了线性条件下正整数表示为四个广义m-棱数和和四个平方和的数目的统一公式。这些公式以Hurwitz类数的z -线性组合形式给出。作为应用,我们证明了孙志伟的几个猜想。作为副产物,我们得到了用Hurwitz类数分别表示φ (τ,z)4, η(τ)12, η(τ)4和η(τ)8η(2τ)8的傅里叶系数的公式。证明是基于雅可比形式的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sums of four polygonal numbers: Precise formulas
In this paper we give unified formulas for the numbers of representations of positive integers as sums of four generalized m-gonal numbers, and as restricted sums of four squares under a linear condition, respectively. These formulas are given as Z-linear combinations of Hurwitz class numbers. As applications, we prove several Zhi-Wei Sun's conjectures. As by-products, we obtain formulas for expressing the Fourier coefficients of ϑ(τ,z)4, η(τ)12, η(τ)4 and η(τ)8η(2τ)8 in terms of Hurwitz class numbers, respectively. The proof is based on the theory of Jacobi forms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信