Journal of the Australian Mathematical Society最新文献

筛选
英文 中文
ASYMPTOTIC BEHAVIOUR OF THE LEAST ENERGY SOLUTIONS TO FRACTIONAL NEUMANN PROBLEMS 分数新曼问题最小能量解的渐近行为
IF 0.7 4区 数学
Journal of the Australian Mathematical Society Pub Date : 2024-09-13 DOI: 10.1017/s1446788724000107
SOMNATH GANDAL, JAGMOHAN TYAGI
{"title":"ASYMPTOTIC BEHAVIOUR OF THE LEAST ENERGY SOLUTIONS TO FRACTIONAL NEUMANN PROBLEMS","authors":"SOMNATH GANDAL, JAGMOHAN TYAGI","doi":"10.1017/s1446788724000107","DOIUrl":"https://doi.org/10.1017/s1446788724000107","url":null,"abstract":"<p>We study the asymptotic behaviour of the least energy solutions to the following class of nonlocal Neumann problems: <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ begin{align*} begin{cases} { d(-Delta)^{s}u+ u= vert uvert^{p-1}u } & text{in } Omega, {u>0} & text{in } Omega, { mathcal{N}_{s}u=0 } & text{in } mathbb{R}^{n}setminus overline{Omega}, end{cases} end{align*} $$</span></span></img></span></p><p>where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$Omega subset mathbb {R}^{n}$</span></span></img></span></span> is a bounded domain of class <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$C^{1,1}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$1<p<({n+s})/({n-s}),,n>max {1, 2s }, 0<s<1, d>0$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$mathcal {N}_{s}u$</span></span></img></span></span> is the nonlocal Neumann derivative. We show that for small <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$d,$</span></span></img></span></span> the least energy solutions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$u_d$</span></span></img></span></span> of the above problem achieve an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$L^{infty }$</span></span></img></span></span>-bound independent of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/ve","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KRONECKER COEFFICIENTS FOR (DUAL) SYMMETRIC INVERSE SEMIGROUPS 对偶)对称反半群的克朗克系数
IF 0.7 4区 数学
Journal of the Australian Mathematical Society Pub Date : 2024-09-13 DOI: 10.1017/s1446788724000119
VOLODYMYR MAZORCHUK, SHRADDHA SRIVASTAVA
{"title":"KRONECKER COEFFICIENTS FOR (DUAL) SYMMETRIC INVERSE SEMIGROUPS","authors":"VOLODYMYR MAZORCHUK, SHRADDHA SRIVASTAVA","doi":"10.1017/s1446788724000119","DOIUrl":"https://doi.org/10.1017/s1446788724000119","url":null,"abstract":"<p>We study analogues of Kronecker coefficients for symmetric inverse semigroups, for dual symmetric inverse semigroups and for the inverse semigroups of bijections between subquotients of finite sets. In all cases, we reduce the problem of determination of such coefficients to some group-theoretic and combinatorial problems. For symmetric inverse semigroups, we provide an explicit formula in terms of the classical Kronecker and Littlewood–Richardson coefficients for symmetric groups.</p>","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GEOMETRY OF CLAIRAUT CONFORMAL RIEMANNIAN MAPS 克莱奥保角里曼尼图几何
IF 0.7 4区 数学
Journal of the Australian Mathematical Society Pub Date : 2024-09-13 DOI: 10.1017/s1446788724000090
KIRAN MEENA, HEMANGI MADHUSUDAN SHAH, BAYRAM ŞAHIN
{"title":"GEOMETRY OF CLAIRAUT CONFORMAL RIEMANNIAN MAPS","authors":"KIRAN MEENA, HEMANGI MADHUSUDAN SHAH, BAYRAM ŞAHIN","doi":"10.1017/s1446788724000090","DOIUrl":"https://doi.org/10.1017/s1446788724000090","url":null,"abstract":"&lt;p&gt;This article &lt;span&gt;introduces&lt;/span&gt; the Clairaut conformal Riemannian map. This notion includes the previously studied notions of Clairaut conformal submersion, Clairaut Riemannian submersion, and the Clairaut Riemannian map as particular cases, and is well known in the classical theory of surfaces. Toward this, we find the necessary and sufficient condition for a conformal Riemannian map &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913065017866-0657:S1446788724000090:S1446788724000090_inline1.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$varphi : M to N$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; between Riemannian manifolds to be a Clairaut conformal Riemannian map with girth &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913065017866-0657:S1446788724000090:S1446788724000090_inline2.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$s = e^f$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;. We show that the fibers of &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913065017866-0657:S1446788724000090:S1446788724000090_inline3.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$varphi $&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; are totally umbilical with mean curvature vector field the negative gradient of the logarithm of the girth function, that is, &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913065017866-0657:S1446788724000090:S1446788724000090_inline4.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$-nabla f$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;. Using this, we obtain a local splitting of &lt;span&gt;M&lt;/span&gt; as a warped product and a usual product, if the horizontal space is integrable (under some appropriate hypothesis). We also provide some examples of the Clairaut conformal Riemannian maps to confirm our main theorem. We observe that the Laplacian of the logarithmic girth, that is, of &lt;span&gt;f&lt;/span&gt;, on the total manifold takes the special form. It reduces to the Laplacian on the horizontal distribution, and if it is nonnegative, the universal covering space of &lt;span&gt;M&lt;/span&gt; becomes a product manifold, under some hypothesis on &lt;span&gt;f&lt;/span&gt;. Analysis of the Laplacian of &lt;span&gt;f&lt;/span&gt; also yields the splitting of the universal covering space of &lt;span&gt;M&lt;/span&gt; as a warped product under some appropriate conditions. We calculate the sectional curvature and mixed sectional curvature of &lt;span&gt;M&lt;/span&gt; when &lt;span&gt;f&lt;/span&gt; is a distance function. We also find the relationships between the total manifold and the fibers being symmetrical and, in particular, having constant sectional curvature, and from there, we compare their universal covering spaces, if fibers are also complete, provided &lt;span&gt;f&lt;/span&gt; is a distance function. We als","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CONGRUENCE SUBGROUPS OF BRAID GROUPS AND CRYSTALLOGRAPHIC QUOTIENTS. PART I 辫状群的同余子群和结晶商。第一部分
IF 0.7 4区 数学
Journal of the Australian Mathematical Society Pub Date : 2024-09-13 DOI: 10.1017/s1446788724000089
PAOLO BELLINGERI, CELESTE DAMIANI, OSCAR OCAMPO, CHARALAMPOS STYLIANAKIS
{"title":"CONGRUENCE SUBGROUPS OF BRAID GROUPS AND CRYSTALLOGRAPHIC QUOTIENTS. PART I","authors":"PAOLO BELLINGERI, CELESTE DAMIANI, OSCAR OCAMPO, CHARALAMPOS STYLIANAKIS","doi":"10.1017/s1446788724000089","DOIUrl":"https://doi.org/10.1017/s1446788724000089","url":null,"abstract":"<p>This paper is the first of a two part series devoted to describing relations between congruence and crystallographic braid groups. We recall and introduce some elements belonging to congruence braid groups and we establish some (iso)-morphisms between crystallographic braid groups and corresponding quotients of congruence braid groups.</p>","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EVALUATION FUNCTIONS AND REFLEXIVITY OF BANACH SPACES OF HOLOMORPHIC FUNCTIONS 整体函数的巴拿赫空间的评价函数和反身性
IF 0.7 4区 数学
Journal of the Australian Mathematical Society Pub Date : 2024-05-31 DOI: 10.1017/s1446788724000077
GUANGFU CAO, LI HE, JI LI, SHUQING ZHANG
{"title":"EVALUATION FUNCTIONS AND REFLEXIVITY OF BANACH SPACES OF HOLOMORPHIC FUNCTIONS","authors":"GUANGFU CAO, LI HE, JI LI, SHUQING ZHANG","doi":"10.1017/s1446788724000077","DOIUrl":"https://doi.org/10.1017/s1446788724000077","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000077_inline1.png\"/> <jats:tex-math> $B(Omega )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a Banach space of holomorphic functions on a bounded connected domain <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000077_inline2.png\"/> <jats:tex-math> $Omega $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000077_inline3.png\"/> <jats:tex-math> ${{mathbb C}^n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we establish a criterion for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000077_inline4.png\"/> <jats:tex-math> $B(Omega )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to be reflexive via evaluation functions on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000077_inline5.png\"/> <jats:tex-math> $B(Omega )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, that is, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000077_inline6.png\"/> <jats:tex-math> $B(Omega )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is reflexive if and only if the evaluation functions span the dual space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000077_inline7.png\"/> <jats:tex-math> $(B(Omega ))^{*} $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TWISTED ACTIONS ON COHOMOLOGIES AND BIMODULES 同调与双模子的扭曲作用
IF 0.7 4区 数学
Journal of the Australian Mathematical Society Pub Date : 2024-05-31 DOI: 10.1017/s1446788724000065
VLADIMIR SHCHIGOLEV
{"title":"TWISTED ACTIONS ON COHOMOLOGIES AND BIMODULES","authors":"VLADIMIR SHCHIGOLEV","doi":"10.1017/s1446788724000065","DOIUrl":"https://doi.org/10.1017/s1446788724000065","url":null,"abstract":"For closed subgroups <jats:italic>L</jats:italic> and <jats:italic>R</jats:italic> of a compact Lie group <jats:italic>G</jats:italic>, a left <jats:italic>L</jats:italic>-space <jats:italic>X</jats:italic>, and an <jats:italic>L</jats:italic>-equivariant continuous map <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000065_inline1.png\"/> <jats:tex-math> $A:Xto G/R$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we introduce the twisted action of the equivariant cohomology <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000065_inline2.png\"/> <jats:tex-math> $H_R^{bullet }(mathrm {pt},Bbbk )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> on the equivariant cohomology <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000065_inline3.png\"/> <jats:tex-math> $H_L^{bullet }(X,Bbbk )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Considering this action as a right action, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000065_inline4.png\"/> <jats:tex-math> $H_L^{bullet }(X,Bbbk )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> becomes a bimodule together with the canonical left action of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000065_inline5.png\"/> <jats:tex-math> $H_L^{bullet }(mathrm {pt},Bbbk )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Using this bimodule structure, we prove an equivariant version of the Künneth isomorphism. We apply this result to the computation of the equivariant cohomologies of Bott–Samelson varieties and to a geometric construction of the bimodule morphisms between them.","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
JAZ volume 116 issue 3 Cover and Back matter JAZ 第 116 卷第 3 期封面和封底事项
IF 0.7 4区 数学
Journal of the Australian Mathematical Society Pub Date : 2024-05-13 DOI: 10.1017/s1446788723000277
{"title":"JAZ volume 116 issue 3 Cover and Back matter","authors":"","doi":"10.1017/s1446788723000277","DOIUrl":"https://doi.org/10.1017/s1446788723000277","url":null,"abstract":"","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140982376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
INDEX 索引
IF 0.7 4区 数学
Journal of the Australian Mathematical Society Pub Date : 2024-05-13 DOI: 10.1017/s1446788723000289
{"title":"INDEX","authors":"","doi":"10.1017/s1446788723000289","DOIUrl":"https://doi.org/10.1017/s1446788723000289","url":null,"abstract":"","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140983800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
JAZ volume 116 issue 3 Cover and Front matter JAZ 第 116 卷第 3 期封面和封底
IF 0.7 4区 数学
Journal of the Australian Mathematical Society Pub Date : 2024-05-13 DOI: 10.1017/s1446788723000265
{"title":"JAZ volume 116 issue 3 Cover and Front matter","authors":"","doi":"10.1017/s1446788723000265","DOIUrl":"https://doi.org/10.1017/s1446788723000265","url":null,"abstract":"","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140986013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SPHERICAL REPRESENTATIONS FOR -FLOWS III: WEIGHT-EXTENDED BRANCHING GRAPHS 流的球形表示法 III:权重扩展分支图
IF 0.7 4区 数学
Journal of the Australian Mathematical Society Pub Date : 2024-04-15 DOI: 10.1017/s1446788724000053
YOSHIMICHI UEDA
{"title":"SPHERICAL REPRESENTATIONS FOR -FLOWS III: WEIGHT-EXTENDED BRANCHING GRAPHS","authors":"YOSHIMICHI UEDA","doi":"10.1017/s1446788724000053","DOIUrl":"https://doi.org/10.1017/s1446788724000053","url":null,"abstract":"We apply Takesaki’s and Connes’s ideas on structure analysis for type III factors to the study of links (a short term of Markov kernels) appearing in asymptotic representation theory.","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140571365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信