带有奇异非线性项的无穷大拉普拉斯方程的粘性解

IF 0.5 4区 数学 Q3 MATHEMATICS
FANG LIU, HONG SUN
{"title":"带有奇异非线性项的无穷大拉普拉斯方程的粘性解","authors":"FANG LIU, HONG SUN","doi":"10.1017/s1446788724000041","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the singular boundary value problem <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*} \\begin{cases} \\Delta_\\infty^h u=\\lambda f(x,u,Du) \\quad &amp;\\mathrm{in}\\; \\Omega, \\\\ u&gt;0\\quad &amp;\\mathrm{in}\\; \\Omega,\\\\ u=0 \\quad &amp;\\mathrm{on} \\;\\partial\\Omega, \\end{cases} \\end{align*} $$</span></span></img></span></p><p>where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda&gt;0$</span></span></img></span></span> is a parameter, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$h&gt;1$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\Delta _\\infty ^h u=|Du|^{h-3} \\langle D^2uDu,Du \\rangle $</span></span></img></span></span> is the highly degenerate and <span>h</span>-homogeneous operator related to the infinity Laplacian. The nonlinear term <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$f(x,t,p):\\Omega \\times (0,\\infty )\\times \\mathbb {R}^{n}\\rightarrow \\mathbb {R}$</span></span></img></span></span> is a continuous function and may exhibit singularity at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$t\\rightarrow 0^{+}$</span></span></img></span></span>. We establish the comparison principle by the double variables method for the general equation <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\Delta _\\infty ^h u=F(x,u,Du)$</span></span></img></span></span> under some conditions on the term <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$F(x,t,p)$</span></span></img></span></span>. Then, we establish the existence of viscosity solutions to the singular boundary value problem in a bounded domain based on Perron’s method and the comparison principle. Finally, we obtain the existence result in the entire Euclidean space by the approximation procedure. In this procedure, we also establish the local Lipschitz continuity of the viscosity solution.</p>","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VISCOSITY SOLUTIONS TO THE INFINITY LAPLACIAN EQUATION WITH SINGULAR NONLINEAR TERMS\",\"authors\":\"FANG LIU, HONG SUN\",\"doi\":\"10.1017/s1446788724000041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the singular boundary value problem <span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_eqnu1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$$ \\\\begin{align*} \\\\begin{cases} \\\\Delta_\\\\infty^h u=\\\\lambda f(x,u,Du) \\\\quad &amp;\\\\mathrm{in}\\\\; \\\\Omega, \\\\\\\\ u&gt;0\\\\quad &amp;\\\\mathrm{in}\\\\; \\\\Omega,\\\\\\\\ u=0 \\\\quad &amp;\\\\mathrm{on} \\\\;\\\\partial\\\\Omega, \\\\end{cases} \\\\end{align*} $$</span></span></img></span></p><p>where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\lambda&gt;0$</span></span></img></span></span> is a parameter, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$h&gt;1$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Delta _\\\\infty ^h u=|Du|^{h-3} \\\\langle D^2uDu,Du \\\\rangle $</span></span></img></span></span> is the highly degenerate and <span>h</span>-homogeneous operator related to the infinity Laplacian. The nonlinear term <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f(x,t,p):\\\\Omega \\\\times (0,\\\\infty )\\\\times \\\\mathbb {R}^{n}\\\\rightarrow \\\\mathbb {R}$</span></span></img></span></span> is a continuous function and may exhibit singularity at <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$t\\\\rightarrow 0^{+}$</span></span></img></span></span>. We establish the comparison principle by the double variables method for the general equation <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Delta _\\\\infty ^h u=F(x,u,Du)$</span></span></img></span></span> under some conditions on the term <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$F(x,t,p)$</span></span></img></span></span>. Then, we establish the existence of viscosity solutions to the singular boundary value problem in a bounded domain based on Perron’s method and the comparison principle. Finally, we obtain the existence result in the entire Euclidean space by the approximation procedure. In this procedure, we also establish the local Lipschitz continuity of the viscosity solution.</p>\",\"PeriodicalId\":50007,\"journal\":{\"name\":\"Journal of the Australian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1446788724000041\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1446788724000041","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究奇异边界值问题 $$ \begin{align*}\开始\Delta_\infty^h u=\lambda f(x,u,Du) \quad &\mathrm{in}\; \Omega, \ u>0\quad &\mathrm{in}\; \Omega,\ u=0 \quad &\mathrm{on}.\Omega, end{cases}\end{align*}$$where $\lambda>0$ is a parameter, $h>1$ and $\Delta _\infty ^h u=|Du|^{h-3}\langle D^2uDu,Du \rangle $ 是与无穷大拉普拉斯相关的高度退化和 h 同调算子。非线性项 $f(x,t,p):\Omega \times (0,\infty )\times \mathbb {R}^{n}\rightarrow \mathbb {R}$ 是一个连续函数,可能在 $t\rightarrow 0^{+}$ 处表现出奇异性。我们通过双变量法为一般方程 $\Delta _\infty ^h u=F(x,u,Du)$ 建立了比较原理,条件是项 $F(x,t,p)$。然后,我们基于 Perron 方法和比较原理,建立了奇异边界值问题在有界域中的粘性解的存在性。最后,我们通过近似过程得到了整个欧几里得空间的存在性结果。在此过程中,我们还建立了粘性解的局部 Lipschitz 连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VISCOSITY SOLUTIONS TO THE INFINITY LAPLACIAN EQUATION WITH SINGULAR NONLINEAR TERMS

In this paper, we study the singular boundary value problem $$ \begin{align*} \begin{cases} \Delta_\infty^h u=\lambda f(x,u,Du) \quad &\mathrm{in}\; \Omega, \\ u>0\quad &\mathrm{in}\; \Omega,\\ u=0 \quad &\mathrm{on} \;\partial\Omega, \end{cases} \end{align*} $$

where $\lambda>0$ is a parameter, $h>1$ and $\Delta _\infty ^h u=|Du|^{h-3} \langle D^2uDu,Du \rangle $ is the highly degenerate and h-homogeneous operator related to the infinity Laplacian. The nonlinear term $f(x,t,p):\Omega \times (0,\infty )\times \mathbb {R}^{n}\rightarrow \mathbb {R}$ is a continuous function and may exhibit singularity at $t\rightarrow 0^{+}$. We establish the comparison principle by the double variables method for the general equation $\Delta _\infty ^h u=F(x,u,Du)$ under some conditions on the term $F(x,t,p)$. Then, we establish the existence of viscosity solutions to the singular boundary value problem in a bounded domain based on Perron’s method and the comparison principle. Finally, we obtain the existence result in the entire Euclidean space by the approximation procedure. In this procedure, we also establish the local Lipschitz continuity of the viscosity solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信