基本非拱顶约根森理论

IF 0.5 4区 数学 Q3 MATHEMATICS
MATTHEW CONDER, HARRIS LEUNG, JEROEN SCHILLEWAERT
{"title":"基本非拱顶约根森理论","authors":"MATTHEW CONDER, HARRIS LEUNG, JEROEN SCHILLEWAERT","doi":"10.1017/s1446788724000028","DOIUrl":null,"url":null,"abstract":"We prove a nonarchimedean analogue of Jørgensen’s inequality, and use it to deduce several algebraic convergence results. As an application, we show that every dense subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000028_inline1.png\" /> <jats:tex-math> ${\\mathrm {SL}_2}(K)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>K</jats:italic> is a <jats:italic>p</jats:italic>-adic field, contains two elements that generate a dense subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000028_inline2.png\" /> <jats:tex-math> ${\\mathrm {SL}_2}(K)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is a special case of a result by Breuillard and Gelander [‘On dense free subgroups of Lie groups’, <jats:italic>J. Algebra</jats:italic>261(2) (2003), 448–467]. We also list several other related results, which are well known to experts, but not easy to locate in the literature; for example, we show that a nonelementary subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000028_inline3.png\" /> <jats:tex-math> ${\\mathrm {SL}_2}(K)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> over a nonarchimedean local field <jats:italic>K</jats:italic> is discrete if and only if each of its two-generator subgroups is discrete.","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BASIC NONARCHIMEDEAN JØRGENSEN THEORY\",\"authors\":\"MATTHEW CONDER, HARRIS LEUNG, JEROEN SCHILLEWAERT\",\"doi\":\"10.1017/s1446788724000028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a nonarchimedean analogue of Jørgensen’s inequality, and use it to deduce several algebraic convergence results. As an application, we show that every dense subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788724000028_inline1.png\\\" /> <jats:tex-math> ${\\\\mathrm {SL}_2}(K)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>K</jats:italic> is a <jats:italic>p</jats:italic>-adic field, contains two elements that generate a dense subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788724000028_inline2.png\\\" /> <jats:tex-math> ${\\\\mathrm {SL}_2}(K)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is a special case of a result by Breuillard and Gelander [‘On dense free subgroups of Lie groups’, <jats:italic>J. Algebra</jats:italic>261(2) (2003), 448–467]. We also list several other related results, which are well known to experts, but not easy to locate in the literature; for example, we show that a nonelementary subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788724000028_inline3.png\\\" /> <jats:tex-math> ${\\\\mathrm {SL}_2}(K)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> over a nonarchimedean local field <jats:italic>K</jats:italic> is discrete if and only if each of its two-generator subgroups is discrete.\",\"PeriodicalId\":50007,\"journal\":{\"name\":\"Journal of the Australian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1446788724000028\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1446788724000028","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了约根森不等式的非archimedean 类似形式,并用它推导出了几个代数收敛结果。作为应用,我们证明了 ${mathrm {SL}_2}(K)$ 的每个密集子群(其中 K 是 p-adic 域)都包含两个元素,它们生成 ${mathrm {SL}_2}(K)$ 的密集子群,这是 Breuillard 和 Gelander ['论李群的密集自由子群',J. Algebra261(2) (2003),448-467] 结果的特例。我们还列出了其他几个相关结果,这些结果为专家所熟知,但在文献中却不易找到;例如,我们证明了在非拱顶局部域 K 上 ${mathrm {SL}_2}(K)$ 的非元素子群是离散的,当且仅当它的每个双发电机子群都是离散的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BASIC NONARCHIMEDEAN JØRGENSEN THEORY
We prove a nonarchimedean analogue of Jørgensen’s inequality, and use it to deduce several algebraic convergence results. As an application, we show that every dense subgroup of ${\mathrm {SL}_2}(K)$ , where K is a p-adic field, contains two elements that generate a dense subgroup of ${\mathrm {SL}_2}(K)$ , which is a special case of a result by Breuillard and Gelander [‘On dense free subgroups of Lie groups’, J. Algebra261(2) (2003), 448–467]. We also list several other related results, which are well known to experts, but not easy to locate in the literature; for example, we show that a nonelementary subgroup of ${\mathrm {SL}_2}(K)$ over a nonarchimedean local field K is discrete if and only if each of its two-generator subgroups is discrete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信