{"title":"基本非拱顶约根森理论","authors":"MATTHEW CONDER, HARRIS LEUNG, JEROEN SCHILLEWAERT","doi":"10.1017/s1446788724000028","DOIUrl":null,"url":null,"abstract":"We prove a nonarchimedean analogue of Jørgensen’s inequality, and use it to deduce several algebraic convergence results. As an application, we show that every dense subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000028_inline1.png\" /> <jats:tex-math> ${\\mathrm {SL}_2}(K)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>K</jats:italic> is a <jats:italic>p</jats:italic>-adic field, contains two elements that generate a dense subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000028_inline2.png\" /> <jats:tex-math> ${\\mathrm {SL}_2}(K)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is a special case of a result by Breuillard and Gelander [‘On dense free subgroups of Lie groups’, <jats:italic>J. Algebra</jats:italic>261(2) (2003), 448–467]. We also list several other related results, which are well known to experts, but not easy to locate in the literature; for example, we show that a nonelementary subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000028_inline3.png\" /> <jats:tex-math> ${\\mathrm {SL}_2}(K)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> over a nonarchimedean local field <jats:italic>K</jats:italic> is discrete if and only if each of its two-generator subgroups is discrete.","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"85 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BASIC NONARCHIMEDEAN JØRGENSEN THEORY\",\"authors\":\"MATTHEW CONDER, HARRIS LEUNG, JEROEN SCHILLEWAERT\",\"doi\":\"10.1017/s1446788724000028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a nonarchimedean analogue of Jørgensen’s inequality, and use it to deduce several algebraic convergence results. As an application, we show that every dense subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788724000028_inline1.png\\\" /> <jats:tex-math> ${\\\\mathrm {SL}_2}(K)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>K</jats:italic> is a <jats:italic>p</jats:italic>-adic field, contains two elements that generate a dense subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788724000028_inline2.png\\\" /> <jats:tex-math> ${\\\\mathrm {SL}_2}(K)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is a special case of a result by Breuillard and Gelander [‘On dense free subgroups of Lie groups’, <jats:italic>J. Algebra</jats:italic>261(2) (2003), 448–467]. We also list several other related results, which are well known to experts, but not easy to locate in the literature; for example, we show that a nonelementary subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1446788724000028_inline3.png\\\" /> <jats:tex-math> ${\\\\mathrm {SL}_2}(K)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> over a nonarchimedean local field <jats:italic>K</jats:italic> is discrete if and only if each of its two-generator subgroups is discrete.\",\"PeriodicalId\":50007,\"journal\":{\"name\":\"Journal of the Australian Mathematical Society\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1446788724000028\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1446788724000028","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We prove a nonarchimedean analogue of Jørgensen’s inequality, and use it to deduce several algebraic convergence results. As an application, we show that every dense subgroup of ${\mathrm {SL}_2}(K)$ , where K is a p-adic field, contains two elements that generate a dense subgroup of ${\mathrm {SL}_2}(K)$ , which is a special case of a result by Breuillard and Gelander [‘On dense free subgroups of Lie groups’, J. Algebra261(2) (2003), 448–467]. We also list several other related results, which are well known to experts, but not easy to locate in the literature; for example, we show that a nonelementary subgroup of ${\mathrm {SL}_2}(K)$ over a nonarchimedean local field K is discrete if and only if each of its two-generator subgroups is discrete.
期刊介绍:
The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred.
Published Bi-monthly
Published for the Australian Mathematical Society