分数新曼问题最小能量解的渐近行为

IF 0.5 4区 数学 Q3 MATHEMATICS
SOMNATH GANDAL, JAGMOHAN TYAGI
{"title":"分数新曼问题最小能量解的渐近行为","authors":"SOMNATH GANDAL, JAGMOHAN TYAGI","doi":"10.1017/s1446788724000107","DOIUrl":null,"url":null,"abstract":"<p>We study the asymptotic behaviour of the least energy solutions to the following class of nonlocal Neumann problems: <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*} \\begin{cases} { d(-\\Delta)^{s}u+ u= \\vert u\\vert^{p-1}u } &amp; \\text{in } \\Omega, \\\\ {u&gt;0} &amp; \\text{in } \\Omega, \\\\ { \\mathcal{N}_{s}u=0 } &amp; \\text{in } \\mathbb{R}^{n}\\setminus \\overline{\\Omega}, \\end{cases} \\end{align*} $$</span></span></img></span></p><p>where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\Omega \\subset \\mathbb {R}^{n}$</span></span></img></span></span> is a bounded domain of class <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$C^{1,1}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$1&lt;p&lt;({n+s})/({n-s}),\\,n&gt;\\max \\{1, 2s \\}, 0&lt;s&lt;1, d&gt;0$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {N}_{s}u$</span></span></img></span></span> is the nonlocal Neumann derivative. We show that for small <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$d,$</span></span></img></span></span> the least energy solutions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$u_d$</span></span></img></span></span> of the above problem achieve an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$L^{\\infty }$</span></span></img></span></span>-bound independent of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$d.$</span></span></img></span></span> Using this together with suitable <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline9.png\"/><span data-mathjax-type=\"texmath\"><span>$L^{r}$</span></span></span></span>-estimates on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline10.png\"/><span data-mathjax-type=\"texmath\"><span>$u_d,$</span></span></span></span> we show that the least energy solution <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline11.png\"/><span data-mathjax-type=\"texmath\"><span>$u_d$</span></span></span></span> achieves a maximum on the boundary of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$\\Omega $</span></span></span></span> for <span>d</span> sufficiently small.</p>","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ASYMPTOTIC BEHAVIOUR OF THE LEAST ENERGY SOLUTIONS TO FRACTIONAL NEUMANN PROBLEMS\",\"authors\":\"SOMNATH GANDAL, JAGMOHAN TYAGI\",\"doi\":\"10.1017/s1446788724000107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the asymptotic behaviour of the least energy solutions to the following class of nonlocal Neumann problems: <span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_eqnu1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$$ \\\\begin{align*} \\\\begin{cases} { d(-\\\\Delta)^{s}u+ u= \\\\vert u\\\\vert^{p-1}u } &amp; \\\\text{in } \\\\Omega, \\\\\\\\ {u&gt;0} &amp; \\\\text{in } \\\\Omega, \\\\\\\\ { \\\\mathcal{N}_{s}u=0 } &amp; \\\\text{in } \\\\mathbb{R}^{n}\\\\setminus \\\\overline{\\\\Omega}, \\\\end{cases} \\\\end{align*} $$</span></span></img></span></p><p>where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Omega \\\\subset \\\\mathbb {R}^{n}$</span></span></img></span></span> is a bounded domain of class <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$C^{1,1}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$1&lt;p&lt;({n+s})/({n-s}),\\\\,n&gt;\\\\max \\\\{1, 2s \\\\}, 0&lt;s&lt;1, d&gt;0$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {N}_{s}u$</span></span></img></span></span> is the nonlocal Neumann derivative. We show that for small <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$d,$</span></span></img></span></span> the least energy solutions <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$u_d$</span></span></img></span></span> of the above problem achieve an <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$L^{\\\\infty }$</span></span></img></span></span>-bound independent of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$d.$</span></span></img></span></span> Using this together with suitable <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline9.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$L^{r}$</span></span></span></span>-estimates on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline10.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$u_d,$</span></span></span></span> we show that the least energy solution <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline11.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$u_d$</span></span></span></span> achieves a maximum on the boundary of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline12.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Omega $</span></span></span></span> for <span>d</span> sufficiently small.</p>\",\"PeriodicalId\":50007,\"journal\":{\"name\":\"Journal of the Australian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1446788724000107\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1446788724000107","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了以下一类非局部新曼问题的最小能量解的渐近行为: $$ \begin{align*}\开始{ d(-\Delta)^{s}u+ u= \vert u\vert^{p-1}u } & (text{in }\Omega, \{u>0} & \text{in }\Omega, \ { \mathcal{N}_{s}u=0 } & \text{in }\mathbb{R}^{n}\setminus \overline{Omega}, \end{cases}\end{align*}其中 $\Omega \subset \mathbb {R}^{n}$ 是类 $C^{1,1}$ 的有界域,$1<p<({n+s})/({n-s}),\,n>\max \{1, 2s \},0<s<1,d>0$,$\mathcal {N}_{s}u$ 是非局部诺依曼导数。我们证明,对于较小的 $d$,上述问题的最小能量解 $u_d$ 实现了与 $d 无关的 $L^{/infty }$ 约束。$ 利用这一点以及对 $u_d$ 的适当 $L^{r}$ 估计,我们证明,对于足够小的 d,最小能量解 $u_d$ 在 $\Omega $ 的边界上实现了最大值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ASYMPTOTIC BEHAVIOUR OF THE LEAST ENERGY SOLUTIONS TO FRACTIONAL NEUMANN PROBLEMS

We study the asymptotic behaviour of the least energy solutions to the following class of nonlocal Neumann problems: $$ \begin{align*} \begin{cases} { d(-\Delta)^{s}u+ u= \vert u\vert^{p-1}u } & \text{in } \Omega, \\ {u>0} & \text{in } \Omega, \\ { \mathcal{N}_{s}u=0 } & \text{in } \mathbb{R}^{n}\setminus \overline{\Omega}, \end{cases} \end{align*} $$

where $\Omega \subset \mathbb {R}^{n}$ is a bounded domain of class $C^{1,1}$, $1<p<({n+s})/({n-s}),\,n>\max \{1, 2s \}, 0<s<1, d>0$ and $\mathcal {N}_{s}u$ is the nonlocal Neumann derivative. We show that for small $d,$ the least energy solutions $u_d$ of the above problem achieve an $L^{\infty }$-bound independent of $d.$ Using this together with suitable $L^{r}$-estimates on $u_d,$ we show that the least energy solution $u_d$ achieves a maximum on the boundary of $\Omega $ for d sufficiently small.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信