{"title":"ASYMPTOTIC BEHAVIOUR OF THE LEAST ENERGY SOLUTIONS TO FRACTIONAL NEUMANN PROBLEMS","authors":"SOMNATH GANDAL, JAGMOHAN TYAGI","doi":"10.1017/s1446788724000107","DOIUrl":null,"url":null,"abstract":"<p>We study the asymptotic behaviour of the least energy solutions to the following class of nonlocal Neumann problems: <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*} \\begin{cases} { d(-\\Delta)^{s}u+ u= \\vert u\\vert^{p-1}u } & \\text{in } \\Omega, \\\\ {u>0} & \\text{in } \\Omega, \\\\ { \\mathcal{N}_{s}u=0 } & \\text{in } \\mathbb{R}^{n}\\setminus \\overline{\\Omega}, \\end{cases} \\end{align*} $$</span></span></img></span></p><p>where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\Omega \\subset \\mathbb {R}^{n}$</span></span></img></span></span> is a bounded domain of class <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$C^{1,1}$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$1<p<({n+s})/({n-s}),\\,n>\\max \\{1, 2s \\}, 0<s<1, d>0$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {N}_{s}u$</span></span></img></span></span> is the nonlocal Neumann derivative. We show that for small <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$d,$</span></span></img></span></span> the least energy solutions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$u_d$</span></span></img></span></span> of the above problem achieve an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$L^{\\infty }$</span></span></img></span></span>-bound independent of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$d.$</span></span></img></span></span> Using this together with suitable <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline9.png\"/><span data-mathjax-type=\"texmath\"><span>$L^{r}$</span></span></span></span>-estimates on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline10.png\"/><span data-mathjax-type=\"texmath\"><span>$u_d,$</span></span></span></span> we show that the least energy solution <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline11.png\"/><span data-mathjax-type=\"texmath\"><span>$u_d$</span></span></span></span> achieves a maximum on the boundary of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913062454564-0570:S1446788724000107:S1446788724000107_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$\\Omega $</span></span></span></span> for <span>d</span> sufficiently small.</p>","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"2 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1446788724000107","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the asymptotic behaviour of the least energy solutions to the following class of nonlocal Neumann problems: $$ \begin{align*} \begin{cases} { d(-\Delta)^{s}u+ u= \vert u\vert^{p-1}u } & \text{in } \Omega, \\ {u>0} & \text{in } \Omega, \\ { \mathcal{N}_{s}u=0 } & \text{in } \mathbb{R}^{n}\setminus \overline{\Omega}, \end{cases} \end{align*} $$
where $\Omega \subset \mathbb {R}^{n}$ is a bounded domain of class $C^{1,1}$, $1<p<({n+s})/({n-s}),\,n>\max \{1, 2s \}, 0<s<1, d>0$ and $\mathcal {N}_{s}u$ is the nonlocal Neumann derivative. We show that for small $d,$ the least energy solutions $u_d$ of the above problem achieve an $L^{\infty }$-bound independent of $d.$ Using this together with suitable $L^{r}$-estimates on $u_d,$ we show that the least energy solution $u_d$ achieves a maximum on the boundary of $\Omega $ for d sufficiently small.
期刊介绍:
The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred.
Published Bi-monthly
Published for the Australian Mathematical Society