{"title":"VISCOSITY SOLUTIONS TO THE INFINITY LAPLACIAN EQUATION WITH SINGULAR NONLINEAR TERMS","authors":"FANG LIU, HONG SUN","doi":"10.1017/s1446788724000041","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the singular boundary value problem <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*} \\begin{cases} \\Delta_\\infty^h u=\\lambda f(x,u,Du) \\quad &\\mathrm{in}\\; \\Omega, \\\\ u>0\\quad &\\mathrm{in}\\; \\Omega,\\\\ u=0 \\quad &\\mathrm{on} \\;\\partial\\Omega, \\end{cases} \\end{align*} $$</span></span></img></span></p><p>where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda>0$</span></span></img></span></span> is a parameter, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$h>1$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\Delta _\\infty ^h u=|Du|^{h-3} \\langle D^2uDu,Du \\rangle $</span></span></img></span></span> is the highly degenerate and <span>h</span>-homogeneous operator related to the infinity Laplacian. The nonlinear term <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$f(x,t,p):\\Omega \\times (0,\\infty )\\times \\mathbb {R}^{n}\\rightarrow \\mathbb {R}$</span></span></img></span></span> is a continuous function and may exhibit singularity at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$t\\rightarrow 0^{+}$</span></span></img></span></span>. We establish the comparison principle by the double variables method for the general equation <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\Delta _\\infty ^h u=F(x,u,Du)$</span></span></img></span></span> under some conditions on the term <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319145321108-0826:S1446788724000041:S1446788724000041_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$F(x,t,p)$</span></span></img></span></span>. Then, we establish the existence of viscosity solutions to the singular boundary value problem in a bounded domain based on Perron’s method and the comparison principle. Finally, we obtain the existence result in the entire Euclidean space by the approximation procedure. In this procedure, we also establish the local Lipschitz continuity of the viscosity solution.</p>","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1446788724000041","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the singular boundary value problem $$ \begin{align*} \begin{cases} \Delta_\infty^h u=\lambda f(x,u,Du) \quad &\mathrm{in}\; \Omega, \\ u>0\quad &\mathrm{in}\; \Omega,\\ u=0 \quad &\mathrm{on} \;\partial\Omega, \end{cases} \end{align*} $$
where $\lambda>0$ is a parameter, $h>1$ and $\Delta _\infty ^h u=|Du|^{h-3} \langle D^2uDu,Du \rangle $ is the highly degenerate and h-homogeneous operator related to the infinity Laplacian. The nonlinear term $f(x,t,p):\Omega \times (0,\infty )\times \mathbb {R}^{n}\rightarrow \mathbb {R}$ is a continuous function and may exhibit singularity at $t\rightarrow 0^{+}$. We establish the comparison principle by the double variables method for the general equation $\Delta _\infty ^h u=F(x,u,Du)$ under some conditions on the term $F(x,t,p)$. Then, we establish the existence of viscosity solutions to the singular boundary value problem in a bounded domain based on Perron’s method and the comparison principle. Finally, we obtain the existence result in the entire Euclidean space by the approximation procedure. In this procedure, we also establish the local Lipschitz continuity of the viscosity solution.
期刊介绍:
The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred.
Published Bi-monthly
Published for the Australian Mathematical Society