{"title":"EXCEPTIONAL SIMPLE REAL LIE ALGEBRAS AND VIA CONTACTIFICATIONS","authors":"Paweł Nurowski","doi":"10.1017/s1474748024000173","DOIUrl":"https://doi.org/10.1017/s1474748024000173","url":null,"abstract":"In Cartan’s PhD thesis, there is a formula defining a certain rank 8 vector distribution in dimension 15, whose algebra of authomorphism is the split real form of the simple exceptional complex Lie algebra <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline3.png\"/> <jats:tex-math> $mathfrak {f}_4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Cartan’s formula is written in the standard Cartesian coordinates in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline4.png\"/> <jats:tex-math> $mathbb {R}^{15}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the present paper, we explain how to find analogous formulae for the flat models of any bracket generating distribution <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline5.png\"/> <jats:tex-math> $mathcal D$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> whose symbol algebra <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline6.png\"/> <jats:tex-math> $mathfrak {n}({mathcal D})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is constant and 2-step graded, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline7.png\"/> <jats:tex-math> $mathfrak {n}({mathcal D})=mathfrak {n}_{-2}oplus mathfrak {n}_{-1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. The formula is given in terms of a solution to a certain system of linear algebraic equations determined by two representations <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline8.png\"/> <jats:tex-math> $(rho ,mathfrak {n}_{-1})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline9.png\"/> <jats:tex-math> $(tau ,mathfrak {n}_{-2})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of a Lie algebra <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline10.png\"/> <jats:tex-math> $mathfrak {n}_{00}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contained in the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline11.png\"/> <jats:tex-math>","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141527979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"COHOMOLOGIE DE DE RHAM DU REVÊTEMENT MODÉRÉ DE L’ESPACE DE DRINFELD","authors":"Damien Junger","doi":"10.1017/s1474748024000082","DOIUrl":"https://doi.org/10.1017/s1474748024000082","url":null,"abstract":"Résumé Dans cet article, nous étudions la cohomologie de de Rham du premier revêtement de la tour de Drinfel’d. En particulier, nous obtenons une preuve purement locale du fait que la partie supercuspidale réalise la correspondance de Jacquet-Langlands locale pour <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000082_inline3.png\"/> <jats:tex-math> $mathrm {GL}_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> en la comparant à la cohomologie rigide de certaines variétés de Deligne-Lusztig. Les représentations obtenues sont analogues à celles qui apparaissent dans la cohomologie <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000082_inline4.png\"/> <jats:tex-math> $ell $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-adique lorsqu’on oublie l’action du groupe de Weil. La preuve repose sur une généralisation d’un résultat d’excision de Grosse-Klönne et de la description explicite du premier revêtement en tant que revêtement cyclique obtenu par l’auteur dans un travail précédent.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141171096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TWISTED GAN–GROSS–PRASAD CONJECTURE FOR CERTAIN TEMPERED L-PACKETS","authors":"Rui Chen, Wee Teck Gan","doi":"10.1017/s1474748024000197","DOIUrl":"https://doi.org/10.1017/s1474748024000197","url":null,"abstract":"In this paper, we investigate the twisted GGP conjecture for certain tempered representations using the theta correspondence and establish some special cases, namely when the L-parameter of the unitary group is the sum of conjugate-dual characters of the appropriate sign.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141151434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ARCHIMEDEAN NEWFORM THEORY FOR","authors":"Peter Humphries","doi":"10.1017/s1474748024000227","DOIUrl":"https://doi.org/10.1017/s1474748024000227","url":null,"abstract":"\u0000 We introduce a new invariant, the conductor exponent, of a generic irreducible Casselman–Wallach representation of \u0000 \u0000 \u0000 \u0000$operatorname {mathrm {GL}}_n(F)$\u0000\u0000 \u0000 , where F is an archimedean local field, that quantifies the extent to which this representation may be ramified. We also determine a distinguished vector, the newform, occurring with multiplicity one in this representation, with the complexity of this vector measured in a natural way by the conductor exponent. Finally, we show that the newform is a test vector for \u0000 \u0000 \u0000 \u0000$operatorname {mathrm {GL}}_n times operatorname {mathrm {GL}}_n$\u0000\u0000 \u0000 and \u0000 \u0000 \u0000 \u0000$operatorname {mathrm {GL}}_n times operatorname {mathrm {GL}}_{n - 1}$\u0000\u0000 \u0000 Rankin–Selberg integrals when the second representation is unramified. This theory parallels an analogous nonarchimedean theory due to Jacquet, Piatetski-Shapiro, and Shalika; combined, this completes a global theory of newforms for automorphic representations of \u0000 \u0000 \u0000 \u0000$operatorname {mathrm {GL}}_n$\u0000\u0000 \u0000 over number fields. By-products of the proofs include new proofs of Stade’s formulæ and a new resolution of the test vector problem for archimedean Godement–Jacquet zeta integrals.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140962654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"JMJ volume 23 issue 3 Cover and Front matter","authors":"","doi":"10.1017/s1474748024000203","DOIUrl":"https://doi.org/10.1017/s1474748024000203","url":null,"abstract":"","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141046831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"JMJ volume 23 issue 3 Cover and Back matter","authors":"","doi":"10.1017/s1474748024000215","DOIUrl":"https://doi.org/10.1017/s1474748024000215","url":null,"abstract":"","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141042266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ADDENDUM: REAL TOPOLOGICAL HOCHSCHILD HOMOLOGY OF SCHEMES","authors":"J. Hornbostel, Doosung Park","doi":"10.1017/s1474748024000069","DOIUrl":"https://doi.org/10.1017/s1474748024000069","url":null,"abstract":"","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141054940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gebhard Böckle, Chandrashekhar B. Khare, Jeffrey Manning
{"title":"WILES DEFECT OF HECKE ALGEBRAS VIA LOCAL-GLOBAL ARGUMENTS","authors":"Gebhard Böckle, Chandrashekhar B. Khare, Jeffrey Manning","doi":"10.1017/s1474748024000021","DOIUrl":"https://doi.org/10.1017/s1474748024000021","url":null,"abstract":"In his work on modularity of elliptic curves and Fermat’s last theorem, A. Wiles introduced two measures of congruences between Galois representations and between modular forms. One measure is related to the order of a Selmer group associated to a newform <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000021_inline1.png\"/> <jats:tex-math> $f in S_2(Gamma _0(N))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (and closely linked to deformations of the Galois representation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000021_inline2.png\"/> <jats:tex-math> $rho _f$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> associated to <jats:italic>f</jats:italic>), whilst the other measure is related to the congruence module associated to <jats:italic>f</jats:italic> (and is closely linked to Hecke rings and congruences between <jats:italic>f</jats:italic> and other newforms in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000021_inline3.png\"/> <jats:tex-math> $S_2(Gamma _0(N))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>). The equality of these two measures led to isomorphisms <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000021_inline4.png\"/> <jats:tex-math> $R={mathbf T}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> between deformation rings and Hecke rings (via a numerical criterion for isomorphisms that Wiles proved) and showed these rings to be complete intersections. We continue our study begun in [BKM21] of the <jats:italic>Wiles defect</jats:italic> of deformation rings and Hecke rings (at a newform <jats:italic>f</jats:italic>) acting on the cohomology of Shimura curves over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000021_inline5.png\"/> <jats:tex-math> ${mathbf Q}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>: It is defined to be the difference between these two measures of congruences. The Wiles defect thus arises from the failure of the Wiles numerical criterion at an augmentation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000021_inline6.png\"/> <jats:tex-math> $lambda _f:{mathbf T} to {mathcal O}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In situations we study here, the Taylor–Wiles–Kisin patching method gives an isomorphism <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140803590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"KOBAYASHI-OCHIAI’S FINITENESS THEOREM FOR ORBIFOLD PAIRS OF GENERAL TYPE","authors":"Finn Bartsch, Ariyan Javanpeykar","doi":"10.1017/s1474748024000094","DOIUrl":"https://doi.org/10.1017/s1474748024000094","url":null,"abstract":"Kobayashi–Ochiai proved that the set of dominant maps from a fixed variety to a fixed variety of general type is finite. We prove the natural extension of their finiteness theorem to Campana’s orbifold pairs.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140608996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}