非凡简单实线性代数和通过接触化

IF 1.1 2区 数学 Q1 MATHEMATICS
Paweł Nurowski
{"title":"非凡简单实线性代数和通过接触化","authors":"Paweł Nurowski","doi":"10.1017/s1474748024000173","DOIUrl":null,"url":null,"abstract":"In Cartan’s PhD thesis, there is a formula defining a certain rank 8 vector distribution in dimension 15, whose algebra of authomorphism is the split real form of the simple exceptional complex Lie algebra <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline3.png\"/> <jats:tex-math> $\\mathfrak {f}_4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Cartan’s formula is written in the standard Cartesian coordinates in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline4.png\"/> <jats:tex-math> $\\mathbb {R}^{15}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the present paper, we explain how to find analogous formulae for the flat models of any bracket generating distribution <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline5.png\"/> <jats:tex-math> $\\mathcal D$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> whose symbol algebra <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline6.png\"/> <jats:tex-math> $\\mathfrak {n}({\\mathcal D})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is constant and 2-step graded, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline7.png\"/> <jats:tex-math> $\\mathfrak {n}({\\mathcal D})=\\mathfrak {n}_{-2}\\oplus \\mathfrak {n}_{-1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. The formula is given in terms of a solution to a certain system of linear algebraic equations determined by two representations <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline8.png\"/> <jats:tex-math> $(\\rho ,\\mathfrak {n}_{-1})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline9.png\"/> <jats:tex-math> $(\\tau ,\\mathfrak {n}_{-2})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of a Lie algebra <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline10.png\"/> <jats:tex-math> $\\mathfrak {n}_{00}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contained in the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline11.png\"/> <jats:tex-math> $0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>th order Tanaka prolongation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline12.png\"/> <jats:tex-math> $\\mathfrak {n}_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline13.png\"/> <jats:tex-math> $\\mathfrak {n}({\\mathcal D})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Numerous examples are provided, with particular emphasis put on the distributions with symmetries being real forms of simple exceptional Lie algebras <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline14.png\"/> <jats:tex-math> $\\mathfrak {f}_4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline15.png\"/> <jats:tex-math> $\\mathfrak {e}_6$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"66 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXCEPTIONAL SIMPLE REAL LIE ALGEBRAS AND VIA CONTACTIFICATIONS\",\"authors\":\"Paweł Nurowski\",\"doi\":\"10.1017/s1474748024000173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Cartan’s PhD thesis, there is a formula defining a certain rank 8 vector distribution in dimension 15, whose algebra of authomorphism is the split real form of the simple exceptional complex Lie algebra <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline3.png\\\"/> <jats:tex-math> $\\\\mathfrak {f}_4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Cartan’s formula is written in the standard Cartesian coordinates in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline4.png\\\"/> <jats:tex-math> $\\\\mathbb {R}^{15}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the present paper, we explain how to find analogous formulae for the flat models of any bracket generating distribution <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline5.png\\\"/> <jats:tex-math> $\\\\mathcal D$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> whose symbol algebra <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline6.png\\\"/> <jats:tex-math> $\\\\mathfrak {n}({\\\\mathcal D})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is constant and 2-step graded, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline7.png\\\"/> <jats:tex-math> $\\\\mathfrak {n}({\\\\mathcal D})=\\\\mathfrak {n}_{-2}\\\\oplus \\\\mathfrak {n}_{-1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. The formula is given in terms of a solution to a certain system of linear algebraic equations determined by two representations <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline8.png\\\"/> <jats:tex-math> $(\\\\rho ,\\\\mathfrak {n}_{-1})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline9.png\\\"/> <jats:tex-math> $(\\\\tau ,\\\\mathfrak {n}_{-2})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of a Lie algebra <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline10.png\\\"/> <jats:tex-math> $\\\\mathfrak {n}_{00}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contained in the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline11.png\\\"/> <jats:tex-math> $0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>th order Tanaka prolongation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline12.png\\\"/> <jats:tex-math> $\\\\mathfrak {n}_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline13.png\\\"/> <jats:tex-math> $\\\\mathfrak {n}({\\\\mathcal D})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Numerous examples are provided, with particular emphasis put on the distributions with symmetries being real forms of simple exceptional Lie algebras <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline14.png\\\"/> <jats:tex-math> $\\\\mathfrak {f}_4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline15.png\\\"/> <jats:tex-math> $\\\\mathfrak {e}_6$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1474748024000173\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748024000173","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在卡坦的博士论文中,有一个公式定义了维度为 15 的某种秩 8 向量分布,其自变量代数是简单特殊复数列代数 $\mathfrak {f}_4$ 的拆分实形式。Cartan 公式是用 $\mathbb {R}^{15}$ 的标准直角坐标写成的。在本文中,我们将解释如何为任意括号生成分布 $\mathcal D$ 的平面模型找到类似的公式,其符号代数 $\mathfrak {n}({\mathcal D})$是恒定的,并且是两步分级的,即 $\mathfrak {n}({\mathcal D})=\mathfrak {n}_{-2}\oplus \mathfrak {n}_{-1}$ 。该公式给出了由两个表示 $(\rho ,\mathfrak {n}_{-1})$ 和 $(\tau 、包含在$mathfrak {n}({\mathcal D})$的$0$三阶田中延长$\mathfrak {n}{n}_0$ 中的李代数$\mathfrak {n}_{00}$ 的两个表示$(\rho ,\mathfrak {n}_{-1})$ 和$(\tau,\mathfrak {n}_{-2})$ 所决定的线性代数方程组。提供了大量的例子,特别强调了具有对称性的分布,这些对称性是简单异常李代数 $\mathfrak {f}_4$ 和 $\mathfrak {e}_6$ 的实形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EXCEPTIONAL SIMPLE REAL LIE ALGEBRAS AND VIA CONTACTIFICATIONS
In Cartan’s PhD thesis, there is a formula defining a certain rank 8 vector distribution in dimension 15, whose algebra of authomorphism is the split real form of the simple exceptional complex Lie algebra $\mathfrak {f}_4$ . Cartan’s formula is written in the standard Cartesian coordinates in $\mathbb {R}^{15}$ . In the present paper, we explain how to find analogous formulae for the flat models of any bracket generating distribution $\mathcal D$ whose symbol algebra $\mathfrak {n}({\mathcal D})$ is constant and 2-step graded, $\mathfrak {n}({\mathcal D})=\mathfrak {n}_{-2}\oplus \mathfrak {n}_{-1}$ . The formula is given in terms of a solution to a certain system of linear algebraic equations determined by two representations $(\rho ,\mathfrak {n}_{-1})$ and $(\tau ,\mathfrak {n}_{-2})$ of a Lie algebra $\mathfrak {n}_{00}$ contained in the $0$ th order Tanaka prolongation $\mathfrak {n}_0$ of $\mathfrak {n}({\mathcal D})$ . Numerous examples are provided, with particular emphasis put on the distributions with symmetries being real forms of simple exceptional Lie algebras $\mathfrak {f}_4$ and $\mathfrak {e}_6$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信