非凡简单实线性代数和通过接触化

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Paweł Nurowski
{"title":"非凡简单实线性代数和通过接触化","authors":"Paweł Nurowski","doi":"10.1017/s1474748024000173","DOIUrl":null,"url":null,"abstract":"In Cartan’s PhD thesis, there is a formula defining a certain rank 8 vector distribution in dimension 15, whose algebra of authomorphism is the split real form of the simple exceptional complex Lie algebra <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline3.png\"/> <jats:tex-math> $\\mathfrak {f}_4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Cartan’s formula is written in the standard Cartesian coordinates in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline4.png\"/> <jats:tex-math> $\\mathbb {R}^{15}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the present paper, we explain how to find analogous formulae for the flat models of any bracket generating distribution <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline5.png\"/> <jats:tex-math> $\\mathcal D$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> whose symbol algebra <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline6.png\"/> <jats:tex-math> $\\mathfrak {n}({\\mathcal D})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is constant and 2-step graded, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline7.png\"/> <jats:tex-math> $\\mathfrak {n}({\\mathcal D})=\\mathfrak {n}_{-2}\\oplus \\mathfrak {n}_{-1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. The formula is given in terms of a solution to a certain system of linear algebraic equations determined by two representations <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline8.png\"/> <jats:tex-math> $(\\rho ,\\mathfrak {n}_{-1})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline9.png\"/> <jats:tex-math> $(\\tau ,\\mathfrak {n}_{-2})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of a Lie algebra <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline10.png\"/> <jats:tex-math> $\\mathfrak {n}_{00}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contained in the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline11.png\"/> <jats:tex-math> $0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>th order Tanaka prolongation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline12.png\"/> <jats:tex-math> $\\mathfrak {n}_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline13.png\"/> <jats:tex-math> $\\mathfrak {n}({\\mathcal D})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Numerous examples are provided, with particular emphasis put on the distributions with symmetries being real forms of simple exceptional Lie algebras <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline14.png\"/> <jats:tex-math> $\\mathfrak {f}_4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000173_inline15.png\"/> <jats:tex-math> $\\mathfrak {e}_6$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXCEPTIONAL SIMPLE REAL LIE ALGEBRAS AND VIA CONTACTIFICATIONS\",\"authors\":\"Paweł Nurowski\",\"doi\":\"10.1017/s1474748024000173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Cartan’s PhD thesis, there is a formula defining a certain rank 8 vector distribution in dimension 15, whose algebra of authomorphism is the split real form of the simple exceptional complex Lie algebra <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline3.png\\\"/> <jats:tex-math> $\\\\mathfrak {f}_4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Cartan’s formula is written in the standard Cartesian coordinates in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline4.png\\\"/> <jats:tex-math> $\\\\mathbb {R}^{15}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the present paper, we explain how to find analogous formulae for the flat models of any bracket generating distribution <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline5.png\\\"/> <jats:tex-math> $\\\\mathcal D$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> whose symbol algebra <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline6.png\\\"/> <jats:tex-math> $\\\\mathfrak {n}({\\\\mathcal D})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is constant and 2-step graded, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline7.png\\\"/> <jats:tex-math> $\\\\mathfrak {n}({\\\\mathcal D})=\\\\mathfrak {n}_{-2}\\\\oplus \\\\mathfrak {n}_{-1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. The formula is given in terms of a solution to a certain system of linear algebraic equations determined by two representations <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline8.png\\\"/> <jats:tex-math> $(\\\\rho ,\\\\mathfrak {n}_{-1})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline9.png\\\"/> <jats:tex-math> $(\\\\tau ,\\\\mathfrak {n}_{-2})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of a Lie algebra <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline10.png\\\"/> <jats:tex-math> $\\\\mathfrak {n}_{00}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contained in the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline11.png\\\"/> <jats:tex-math> $0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>th order Tanaka prolongation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline12.png\\\"/> <jats:tex-math> $\\\\mathfrak {n}_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline13.png\\\"/> <jats:tex-math> $\\\\mathfrak {n}({\\\\mathcal D})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Numerous examples are provided, with particular emphasis put on the distributions with symmetries being real forms of simple exceptional Lie algebras <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline14.png\\\"/> <jats:tex-math> $\\\\mathfrak {f}_4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000173_inline15.png\\\"/> <jats:tex-math> $\\\\mathfrak {e}_6$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1474748024000173\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748024000173","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在卡坦的博士论文中,有一个公式定义了维度为 15 的某种秩 8 向量分布,其自变量代数是简单特殊复数列代数 $\mathfrak {f}_4$ 的拆分实形式。Cartan 公式是用 $\mathbb {R}^{15}$ 的标准直角坐标写成的。在本文中,我们将解释如何为任意括号生成分布 $\mathcal D$ 的平面模型找到类似的公式,其符号代数 $\mathfrak {n}({\mathcal D})$是恒定的,并且是两步分级的,即 $\mathfrak {n}({\mathcal D})=\mathfrak {n}_{-2}\oplus \mathfrak {n}_{-1}$ 。该公式给出了由两个表示 $(\rho ,\mathfrak {n}_{-1})$ 和 $(\tau 、包含在$mathfrak {n}({\mathcal D})$的$0$三阶田中延长$\mathfrak {n}{n}_0$ 中的李代数$\mathfrak {n}_{00}$ 的两个表示$(\rho ,\mathfrak {n}_{-1})$ 和$(\tau,\mathfrak {n}_{-2})$ 所决定的线性代数方程组。提供了大量的例子,特别强调了具有对称性的分布,这些对称性是简单异常李代数 $\mathfrak {f}_4$ 和 $\mathfrak {e}_6$ 的实形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EXCEPTIONAL SIMPLE REAL LIE ALGEBRAS AND VIA CONTACTIFICATIONS
In Cartan’s PhD thesis, there is a formula defining a certain rank 8 vector distribution in dimension 15, whose algebra of authomorphism is the split real form of the simple exceptional complex Lie algebra $\mathfrak {f}_4$ . Cartan’s formula is written in the standard Cartesian coordinates in $\mathbb {R}^{15}$ . In the present paper, we explain how to find analogous formulae for the flat models of any bracket generating distribution $\mathcal D$ whose symbol algebra $\mathfrak {n}({\mathcal D})$ is constant and 2-step graded, $\mathfrak {n}({\mathcal D})=\mathfrak {n}_{-2}\oplus \mathfrak {n}_{-1}$ . The formula is given in terms of a solution to a certain system of linear algebraic equations determined by two representations $(\rho ,\mathfrak {n}_{-1})$ and $(\tau ,\mathfrak {n}_{-2})$ of a Lie algebra $\mathfrak {n}_{00}$ contained in the $0$ th order Tanaka prolongation $\mathfrak {n}_0$ of $\mathfrak {n}({\mathcal D})$ . Numerous examples are provided, with particular emphasis put on the distributions with symmetries being real forms of simple exceptional Lie algebras $\mathfrak {f}_4$ and $\mathfrak {e}_6$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信