{"title":"德林菲尔德空间温和覆盖的德拉姆同调","authors":"Damien Junger","doi":"10.1017/s1474748024000082","DOIUrl":null,"url":null,"abstract":"Résumé Dans cet article, nous étudions la cohomologie de de Rham du premier revêtement de la tour de Drinfel’d. En particulier, nous obtenons une preuve purement locale du fait que la partie supercuspidale réalise la correspondance de Jacquet-Langlands locale pour <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000082_inline3.png\"/> <jats:tex-math> $\\mathrm {GL}_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> en la comparant à la cohomologie rigide de certaines variétés de Deligne-Lusztig. Les représentations obtenues sont analogues à celles qui apparaissent dans la cohomologie <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000082_inline4.png\"/> <jats:tex-math> $\\ell $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-adique lorsqu’on oublie l’action du groupe de Weil. La preuve repose sur une généralisation d’un résultat d’excision de Grosse-Klönne et de la description explicite du premier revêtement en tant que revêtement cyclique obtenu par l’auteur dans un travail précédent.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"66 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COHOMOLOGIE DE DE RHAM DU REVÊTEMENT MODÉRÉ DE L’ESPACE DE DRINFELD\",\"authors\":\"Damien Junger\",\"doi\":\"10.1017/s1474748024000082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Résumé Dans cet article, nous étudions la cohomologie de de Rham du premier revêtement de la tour de Drinfel’d. En particulier, nous obtenons une preuve purement locale du fait que la partie supercuspidale réalise la correspondance de Jacquet-Langlands locale pour <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000082_inline3.png\\\"/> <jats:tex-math> $\\\\mathrm {GL}_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> en la comparant à la cohomologie rigide de certaines variétés de Deligne-Lusztig. Les représentations obtenues sont analogues à celles qui apparaissent dans la cohomologie <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000082_inline4.png\\\"/> <jats:tex-math> $\\\\ell $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-adique lorsqu’on oublie l’action du groupe de Weil. La preuve repose sur une généralisation d’un résultat d’excision de Grosse-Klönne et de la description explicite du premier revêtement en tant que revêtement cyclique obtenu par l’auteur dans un travail précédent.\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1474748024000082\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748024000082","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
COHOMOLOGIE DE DE RHAM DU REVÊTEMENT MODÉRÉ DE L’ESPACE DE DRINFELD
Résumé Dans cet article, nous étudions la cohomologie de de Rham du premier revêtement de la tour de Drinfel’d. En particulier, nous obtenons une preuve purement locale du fait que la partie supercuspidale réalise la correspondance de Jacquet-Langlands locale pour $\mathrm {GL}_n$ en la comparant à la cohomologie rigide de certaines variétés de Deligne-Lusztig. Les représentations obtenues sont analogues à celles qui apparaissent dans la cohomologie $\ell $ -adique lorsqu’on oublie l’action du groupe de Weil. La preuve repose sur une généralisation d’un résultat d’excision de Grosse-Klönne et de la description explicite du premier revêtement en tant que revêtement cyclique obtenu par l’auteur dans un travail précédent.
期刊介绍:
The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.