COHOMOLOGIE DE DE RHAM DU REVÊTEMENT MODÉRÉ DE L’ESPACE DE DRINFELD

IF 1.1 2区 数学 Q1 MATHEMATICS
Damien Junger
{"title":"COHOMOLOGIE DE DE RHAM DU REVÊTEMENT MODÉRÉ DE L’ESPACE DE DRINFELD","authors":"Damien Junger","doi":"10.1017/s1474748024000082","DOIUrl":null,"url":null,"abstract":"Résumé Dans cet article, nous étudions la cohomologie de de Rham du premier revêtement de la tour de Drinfel’d. En particulier, nous obtenons une preuve purement locale du fait que la partie supercuspidale réalise la correspondance de Jacquet-Langlands locale pour <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000082_inline3.png\"/> <jats:tex-math> $\\mathrm {GL}_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> en la comparant à la cohomologie rigide de certaines variétés de Deligne-Lusztig. Les représentations obtenues sont analogues à celles qui apparaissent dans la cohomologie <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000082_inline4.png\"/> <jats:tex-math> $\\ell $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-adique lorsqu’on oublie l’action du groupe de Weil. La preuve repose sur une généralisation d’un résultat d’excision de Grosse-Klönne et de la description explicite du premier revêtement en tant que revêtement cyclique obtenu par l’auteur dans un travail précédent.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"66 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748024000082","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Résumé Dans cet article, nous étudions la cohomologie de de Rham du premier revêtement de la tour de Drinfel’d. En particulier, nous obtenons une preuve purement locale du fait que la partie supercuspidale réalise la correspondance de Jacquet-Langlands locale pour $\mathrm {GL}_n$ en la comparant à la cohomologie rigide de certaines variétés de Deligne-Lusztig. Les représentations obtenues sont analogues à celles qui apparaissent dans la cohomologie $\ell $ -adique lorsqu’on oublie l’action du groupe de Weil. La preuve repose sur une généralisation d’un résultat d’excision de Grosse-Klönne et de la description explicite du premier revêtement en tant que revêtement cyclique obtenu par l’auteur dans un travail précédent.
德林菲尔德空间温和覆盖的德拉姆同调
摘要 本文研究了德林费尔德塔第一覆盖的德拉姆同调。特别是,我们通过将其与某些德林菲尔-鲁斯提格(Deligne-Lusztig)变体的刚性同调进行比较,得到了一个纯粹的局部证明,即超pidal 部分实现了 $\mathrm {GL}_n$ 的局部雅克-朗兰兹(Jacquet-Langlands)对应关系。当我们忘记魏尔群的作用时,所得到的表示类似于那些出现在 $\ell $ -adic cohomology 中的表示。证明是基于格罗斯-克洛讷切除结果的推广,以及作者在之前的工作中获得的作为循环覆盖的第一覆盖的明确描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信