WILES DEFECT OF HECKE ALGEBRAS VIA LOCAL-GLOBAL ARGUMENTS

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Gebhard Böckle, Chandrashekhar B. Khare, Jeffrey Manning
{"title":"WILES DEFECT OF HECKE ALGEBRAS VIA LOCAL-GLOBAL ARGUMENTS","authors":"Gebhard Böckle, Chandrashekhar B. Khare, Jeffrey Manning","doi":"10.1017/s1474748024000021","DOIUrl":null,"url":null,"abstract":"In his work on modularity of elliptic curves and Fermat’s last theorem, A. Wiles introduced two measures of congruences between Galois representations and between modular forms. One measure is related to the order of a Selmer group associated to a newform <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000021_inline1.png\"/> <jats:tex-math> $f \\in S_2(\\Gamma _0(N))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (and closely linked to deformations of the Galois representation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000021_inline2.png\"/> <jats:tex-math> $\\rho _f$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> associated to <jats:italic>f</jats:italic>), whilst the other measure is related to the congruence module associated to <jats:italic>f</jats:italic> (and is closely linked to Hecke rings and congruences between <jats:italic>f</jats:italic> and other newforms in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000021_inline3.png\"/> <jats:tex-math> $S_2(\\Gamma _0(N))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>). The equality of these two measures led to isomorphisms <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000021_inline4.png\"/> <jats:tex-math> $R={\\mathbf T}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> between deformation rings and Hecke rings (via a numerical criterion for isomorphisms that Wiles proved) and showed these rings to be complete intersections. We continue our study begun in [BKM21] of the <jats:italic>Wiles defect</jats:italic> of deformation rings and Hecke rings (at a newform <jats:italic>f</jats:italic>) acting on the cohomology of Shimura curves over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000021_inline5.png\"/> <jats:tex-math> ${\\mathbf Q}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>: It is defined to be the difference between these two measures of congruences. The Wiles defect thus arises from the failure of the Wiles numerical criterion at an augmentation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000021_inline6.png\"/> <jats:tex-math> $\\lambda _f:{\\mathbf T} \\to {\\mathcal O}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In situations we study here, the Taylor–Wiles–Kisin patching method gives an isomorphism <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000021_inline7.png\"/> <jats:tex-math> $ R={\\mathbf T}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> without the rings being complete intersections. Using novel arguments in commutative algebra and patching, we generalize significantly and give different proofs of the results in [BKM21] that compute the Wiles defect at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000021_inline8.png\"/> <jats:tex-math> $\\lambda _f: R={\\mathbf T} \\to {\\mathcal O}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and explain in an <jats:italic>a priori</jats:italic> manner why the answer in [BKM21] is a sum of <jats:italic>local defects</jats:italic>. As a curious application of our work we give a new and more robust approach to the result of Ribet–Takahashi that computes change of degrees of optimal parametrizations of elliptic curves over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000021_inline9.png\"/> <jats:tex-math> ${\\mathbf Q}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by Shimura curves as we vary the Shimura curve. The results we prove are not attainable using only the methods of Ribet–Takahashi.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748024000021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In his work on modularity of elliptic curves and Fermat’s last theorem, A. Wiles introduced two measures of congruences between Galois representations and between modular forms. One measure is related to the order of a Selmer group associated to a newform $f \in S_2(\Gamma _0(N))$ (and closely linked to deformations of the Galois representation $\rho _f$ associated to f), whilst the other measure is related to the congruence module associated to f (and is closely linked to Hecke rings and congruences between f and other newforms in $S_2(\Gamma _0(N))$ ). The equality of these two measures led to isomorphisms $R={\mathbf T}$ between deformation rings and Hecke rings (via a numerical criterion for isomorphisms that Wiles proved) and showed these rings to be complete intersections. We continue our study begun in [BKM21] of the Wiles defect of deformation rings and Hecke rings (at a newform f) acting on the cohomology of Shimura curves over ${\mathbf Q}$ : It is defined to be the difference between these two measures of congruences. The Wiles defect thus arises from the failure of the Wiles numerical criterion at an augmentation $\lambda _f:{\mathbf T} \to {\mathcal O}$ . In situations we study here, the Taylor–Wiles–Kisin patching method gives an isomorphism $ R={\mathbf T}$ without the rings being complete intersections. Using novel arguments in commutative algebra and patching, we generalize significantly and give different proofs of the results in [BKM21] that compute the Wiles defect at $\lambda _f: R={\mathbf T} \to {\mathcal O}$ , and explain in an a priori manner why the answer in [BKM21] is a sum of local defects. As a curious application of our work we give a new and more robust approach to the result of Ribet–Takahashi that computes change of degrees of optimal parametrizations of elliptic curves over ${\mathbf Q}$ by Shimura curves as we vary the Shimura curve. The results we prove are not attainable using only the methods of Ribet–Takahashi.
通过局部-全局论证的赫克代数的怀尔斯缺陷
在研究椭圆曲线的模块性和费马最后定理时,A. 怀尔斯引入了伽罗瓦表示之间和模块形式之间的两个同调度量。其中一个度量与 S_2(\Gamma _0(N))$ 中与新形式 $f \ 相关联的塞尔默群的阶数有关(并与与 f 相关联的伽罗瓦表示 $\rho _f$ 的变形密切相关),而另一个度量则与 f 相关联的全等模块有关(并与赫克环以及 f 与 $S_2(\Gamma _0(N))$ 中其他新形式之间的全等密切相关)。这两个度量的相等导致了变形环与赫克环之间的同构$R={\mathbf T}$(通过怀尔斯证明的同构数值标准),并证明这些环是完全相交的。我们继续[BKM21]中开始的关于变形环和 Hecke 环(在新形式 f 上)作用于 ${mathbf Q}$ 上 Shimura 曲线同调的 Wiles 缺陷的研究:它被定义为这两种同调度量之间的差。因此,怀尔斯缺陷源于怀尔斯数值准则在增量 $\lambda _f:{\mathbf T} 时的失效。\到 {\mathcal O}$ 。在我们这里研究的情形中,泰勒-怀尔斯-基辛修补法给出了一个同构的 $ R={\mathbf T}$ 而环并不是完全相交的。利用换元代数和修补中的新论点,我们对 [BKM21] 中计算 $\lambda _f 的怀尔斯缺陷的结果进行了重大推广,并给出了不同的证明:R={\mathbf T}\到 {\mathcal O}$ ,并以先验的方式解释了为什么 [BKM21] 中的答案是局部缺陷之和。作为我们工作的一个奇特应用,我们给出了一种新的、更稳健的方法来处理里贝特-高桥(Ribet-Takahashi)的结果,即当我们改变 Shimura 曲线时,通过 Shimura 曲线计算 ${\mathbf Q}$ 上椭圆曲线最优参数化的度数变化。我们证明的结果仅用高桥里贝的方法是无法实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信