关于岩崛球面离散数列表示的区别

IF 1.1 2区 数学 Q1 MATHEMATICS
Paul Broussous
{"title":"关于岩崛球面离散数列表示的区别","authors":"Paul Broussous","doi":"10.1017/s1474748024000185","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000185_inline1.png\" /> <jats:tex-math> $E/F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a quadratic unramified extension of non-archimedean local fields and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000185_inline2.png\" /> <jats:tex-math> $\\mathbb H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> a simply connected semisimple algebraic group defined and split over <jats:italic>F</jats:italic>. We establish general results (multiplicities, test vectors) on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000185_inline3.png\" /> <jats:tex-math> ${\\mathbb H} (F)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-distinguished Iwahori-spherical representations of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000185_inline4.png\" /> <jats:tex-math> ${\\mathbb H} (E)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. For discrete series Iwahori-spherical representations of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000185_inline5.png\" /> <jats:tex-math> ${\\mathbb H} (E)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we prove a numerical criterion of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000185_inline6.png\" /> <jats:tex-math> ${\\mathbb H} (F)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-distinction. As an application, we classify the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000185_inline7.png\" /> <jats:tex-math> ${\\mathbb H} (F)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-distinguished discrete series representations of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000185_inline8.png\" /> <jats:tex-math> ${\\mathbb H} (E)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> corresponding to degree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748024000185_inline9.png\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> characters of the Iwahori-Hecke algebra.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"100 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE DISTINCTION OF IWAHORI-SPHERICAL DISCRETE SERIES REPRESENTATIONS\",\"authors\":\"Paul Broussous\",\"doi\":\"10.1017/s1474748024000185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000185_inline1.png\\\" /> <jats:tex-math> $E/F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a quadratic unramified extension of non-archimedean local fields and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000185_inline2.png\\\" /> <jats:tex-math> $\\\\mathbb H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> a simply connected semisimple algebraic group defined and split over <jats:italic>F</jats:italic>. We establish general results (multiplicities, test vectors) on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000185_inline3.png\\\" /> <jats:tex-math> ${\\\\mathbb H} (F)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-distinguished Iwahori-spherical representations of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000185_inline4.png\\\" /> <jats:tex-math> ${\\\\mathbb H} (E)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. For discrete series Iwahori-spherical representations of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000185_inline5.png\\\" /> <jats:tex-math> ${\\\\mathbb H} (E)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we prove a numerical criterion of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000185_inline6.png\\\" /> <jats:tex-math> ${\\\\mathbb H} (F)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-distinction. As an application, we classify the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000185_inline7.png\\\" /> <jats:tex-math> ${\\\\mathbb H} (F)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-distinguished discrete series representations of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000185_inline8.png\\\" /> <jats:tex-math> ${\\\\mathbb H} (E)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> corresponding to degree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748024000185_inline9.png\\\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> characters of the Iwahori-Hecke algebra.\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1474748024000185\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748024000185","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了关于 ${\mathbb H} (F)$ 的${\mathbb H} (E)$ 的区分岩堀球形表示的一般结果(乘数、检验向量)。对于 ${{mathbb H} (E)$ 的离散序列岩崛球形表示,我们证明了 ${{mathbb H} (F)$ 区分的数值标准。作为应用,我们对与岩堀-赫克代数的度 1$ 字符相对应的 ${\mathbb H} (F)$ 区分离散数列表示进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE DISTINCTION OF IWAHORI-SPHERICAL DISCRETE SERIES REPRESENTATIONS
Let $E/F$ be a quadratic unramified extension of non-archimedean local fields and $\mathbb H$ a simply connected semisimple algebraic group defined and split over F. We establish general results (multiplicities, test vectors) on ${\mathbb H} (F)$ -distinguished Iwahori-spherical representations of ${\mathbb H} (E)$ . For discrete series Iwahori-spherical representations of ${\mathbb H} (E)$ , we prove a numerical criterion of ${\mathbb H} (F)$ -distinction. As an application, we classify the ${\mathbb H} (F)$ -distinguished discrete series representations of ${\mathbb H} (E)$ corresponding to degree $1$ characters of the Iwahori-Hecke algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信