Journal of Time Series Analysis最新文献

筛选
英文 中文
On the asymptotic behavior of bubble date estimators 关于泡沫日期估计量的渐近性态
IF 0.9 4区 数学
Journal of Time Series Analysis Pub Date : 2022-11-13 DOI: 10.1111/jtsa.12672
Eiji Kurozumi, Anton Skrobotov
{"title":"On the asymptotic behavior of bubble date estimators","authors":"Eiji Kurozumi,&nbsp;Anton Skrobotov","doi":"10.1111/jtsa.12672","DOIUrl":"10.1111/jtsa.12672","url":null,"abstract":"<p>In this study, we extend the three-regime bubble model of Pang et al. (2021, <i>Journal of Econometrics</i>, 221(1):227–311) to allow the forth regime followed by the unit root process after recovery. We provide the asymptotic and finite sample justification of the consistency of the collapse date estimator in the two-regime AR(1) model. The consistency allows us to split the sample before and after the date of collapse and to consider the estimation of the date of exuberation and date of recovery separately. We have also found that the limiting behavior of the recovery date varies depending on the extent of explosiveness and recovering.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12672","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49449711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
On highly skewed fractional log-stable noise sequences and their application 关于高偏斜分数对数稳定噪声序列及其应用
IF 0.9 4区 数学
Journal of Time Series Analysis Pub Date : 2022-11-13 DOI: 10.1111/jtsa.12671
Harry Pavlopoulos, George Chronis
{"title":"On highly skewed fractional log-stable noise sequences and their application","authors":"Harry Pavlopoulos,&nbsp;George Chronis","doi":"10.1111/jtsa.12671","DOIUrl":"10.1111/jtsa.12671","url":null,"abstract":"<p>Considering log-LFSN (log-linear fractional stable noise) sequences <math>\u0000 <msub>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <msub>\u0000 <mrow>\u0000 <mi>Y</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mo>=</mo>\u0000 <msup>\u0000 <mrow>\u0000 <mi>e</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>δ</mi>\u0000 <mo>·</mo>\u0000 <msub>\u0000 <mrow>\u0000 <mi>X</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mo>+</mo>\u0000 <mi>ε</mi>\u0000 </mrow>\u0000 </msup>\u0000 <mo>}</mo>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>∈</mo>\u0000 <mi>ℤ</mi>\u0000 </mrow>\u0000 </msub></math>, driven by non-Gaussian one-sided LFSN <math>\u0000 <msub>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <msub>\u0000 <mrow>\u0000 <mi>X</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mo>}</mo>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>∈</mo>\u0000 <mi>ℤ</mi>\u0000 </mrow>\u0000 </msub></math> with constant skewness intensity <math>\u0000 <msub>\u0000 <mrow>\u0000 <mi>β</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 </msub>\u0000 <mo>∈</mo>\u0000 <mo>[</mo>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mn>1</mn>\u0000 <mo>]</mo></math>, for any <math>\u0000 <mi>δ</mi>\u0000 <mo>∈</mo>\u0000 <mi>ℝ</mi>\u0000 <mo>−</mo>\u0000 <mo>{</mo>\u0000 <mn>0</mn>\u0000 <mo>}</mo></math> and <math>\u0000 <mi>ε</mi>\u0000 <mo>∈</mo>\u0000 <mi>ℝ</mi></math>, we show that the auto-covariance function (ACVF) <math>\u0000 <msub>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <msub>\u0000 <mrow>\u0000 <mi>γ</mi>\u0000 </mrow>\u0000 ","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12671","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48740120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to the article “Regular multidimensional stationary time series” “正则多维平稳时间序列”一文的勘误表
IF 0.9 4区 数学
Journal of Time Series Analysis Pub Date : 2022-11-02 DOI: 10.1111/jtsa.12670
Tamás Szabados
{"title":"Corrigendum to the article “Regular multidimensional stationary time series”","authors":"Tamás Szabados","doi":"10.1111/jtsa.12670","DOIUrl":"10.1111/jtsa.12670","url":null,"abstract":"<p>In Theorem 2.1 which was the main result of the article it was implicitly assumed that for any regular <math>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 </mrow></math>-dimensional weakly stationary time series <math>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <msub>\u0000 <mrow>\u0000 <mi>X</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mo>}</mo>\u0000 </mrow></math> of rank <math>\u0000 <mrow>\u0000 <mi>r</mi>\u0000 </mrow></math>, <math>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>≤</mo>\u0000 <mi>r</mi>\u0000 <mo>≤</mo>\u0000 <mi>d</mi>\u0000 </mrow></math>, there exists an analytic spectral factor <math>\u0000 <mrow>\u0000 <mi>Φ</mi>\u0000 <mo>(</mo>\u0000 <mi>z</mi>\u0000 <mo>)</mo>\u0000 </mrow></math> of the form <math>\u0000 <mrow>\u0000 <mi>Φ</mi>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mrow>\u0000 <mi>e</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mi>i</mi>\u0000 <mi>ω</mi>\u0000 </mrow>\u0000 </msup>\u0000 <mo>)</mo>\u0000 <mo>=</mo>\u0000 <msqrt>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>π</mi>\u0000 </mrow>\u0000 </msqrt>\u0000 <mspace></mspace>\u0000 <mover>\u0000 <mrow>\u0000 <mi>U</mi>\u0000 </mrow>\u0000 <mo>˜</mo>\u0000 </mover>\u0000 <mo>(</mo>\u0000 <mi>ω</mi>\u0000 <mo>)</mo>\u0000 <msubsup>\u0000 <mrow>\u0000 <mi>Λ</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>r</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>/</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 </msubsup>\u0000 <mo>(</mo>\u0000 <mi>ω</mi>\u0000 <mo>)</mo>\u0000 </mrow></math>, where <math>\u0000 <mrow>\u0000 <msub>\u0000 <mrow>\u0000 <mi>Λ</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>r</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mo>(</mo>\u0000 <mi>ω</mi>\u0000 <mo>)</mo>\u0000 </mrow></math> is the <math>\u0000 <mrow>\u0000 ","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12670","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47948551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
System identification using autoregressive Bayesian neural networks with nonparametric noise models 基于非参数噪声模型的自回归贝叶斯神经网络系统辨识
IF 0.9 4区 数学
Journal of Time Series Analysis Pub Date : 2022-10-17 DOI: 10.1111/jtsa.12669
Christos Merkatas, Simo Särkkä
{"title":"System identification using autoregressive Bayesian neural networks with nonparametric noise models","authors":"Christos Merkatas,&nbsp;Simo Särkkä","doi":"10.1111/jtsa.12669","DOIUrl":"10.1111/jtsa.12669","url":null,"abstract":"<p>System identification is of special interest in science and engineering. This article is concerned with a system identification problem arising in stochastic dynamic systems, where the aim is to estimate the parameters of a system along with its unknown noise processes. In particular, we propose a Bayesian nonparametric approach for system identification in discrete time nonlinear random dynamical systems assuming only the order of the Markov process is known. The proposed method replaces the assumption of Gaussian distributed error components with a flexible family of probability density functions based on Bayesian nonparametric priors. Additionally, the functional form of the system is estimated by leveraging Bayesian neural networks, which leads to flexible uncertainty quantification. Hamiltonian Monte Carlo sampler within a Gibbs sampler for posterior inference is proposed and its effectiveness is illustrated in real time series.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12669","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49302262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A nonparametric predictive regression model using partitioning estimators based on Taylor expansions 基于Taylor展开的分区估计的非参数预测回归模型
IF 0.9 4区 数学
Journal of Time Series Analysis Pub Date : 2022-10-17 DOI: 10.1111/jtsa.12668
Jose Olmo
{"title":"A nonparametric predictive regression model using partitioning estimators based on Taylor expansions","authors":"Jose Olmo","doi":"10.1111/jtsa.12668","DOIUrl":"10.1111/jtsa.12668","url":null,"abstract":"<p>This article proposes a nonparametric predictive regression model. The unknown function modeling the predictive relationship is approximated using polynomial Taylor expansions applied over disjoint intervals covering the support of the predictor variable. The model is estimated using the theory on partitioning estimators that is extended to a stationary time series setting. We show pointwise and uniform convergence of the proposed estimator and derive its asymptotic normality. These asymptotic results are applied to test for the presence of predictive ability. We develop an asymptotic pointwise test of predictive ability using the critical values of a Normal distribution, and a uniform test with asymptotic distribution that is approximated using a <i>p</i>-value transformation and Wild bootstrap methods. These theoretical insights are illustrated in an extensive simulation exercise and also in an empirical application to forecasting high-frequency based realized volatility measures. Our results provide empirical support to the presence of nonlinear autoregressive predictability of these measures for the constituents of the Dow Jones index.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41718162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tempered functional time series 回火函数时间序列
IF 0.9 4区 数学
Journal of Time Series Analysis Pub Date : 2022-10-12 DOI: 10.1111/jtsa.12667
Farzad Sabzikar, Piotr Kokoszka
{"title":"Tempered functional time series","authors":"Farzad Sabzikar,&nbsp;Piotr Kokoszka","doi":"10.1111/jtsa.12667","DOIUrl":"10.1111/jtsa.12667","url":null,"abstract":"<p>We propose a broad class of models for time series of curves (functions) that can be used to quantify near long-range dependence or near unit root behavior. We establish fundamental properties of these models and rates of consistency for the sample mean function and the sample covariance operator. The latter plays a role analogous to sample cross-covariances for multivariate time series, but is far more important in the functional setting because its eigenfunctions are used in principal component analysis, which is a major tool in functional data analysis. It is used for dimension reduction of feature extraction. We also establish a central limit theorem for functions following our model. Both the consistency rates and the normalizations in the Central Limit Theorem (CLT) are nonstandard. They reflect the local unit root behavior and the long memory structure at moderate lags.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43416610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Volatility models for stylized facts of high-frequency financial data 高频金融数据风格化事实的波动率模型
IF 0.9 4区 数学
Journal of Time Series Analysis Pub Date : 2022-08-29 DOI: 10.1111/jtsa.12666
Donggyu Kim, Minseok Shin
{"title":"Volatility models for stylized facts of high-frequency financial data","authors":"Donggyu Kim,&nbsp;Minseok Shin","doi":"10.1111/jtsa.12666","DOIUrl":"10.1111/jtsa.12666","url":null,"abstract":"<p>This article introduces novel volatility diffusion models to account for the stylized facts of high-frequency financial data such as volatility clustering, intraday U-shape, and leverage effect. For example, the daily integrated volatility of the proposed volatility process has a realized GARCH structure with an asymmetric effect on log returns. To further explain the heavy-tailedness of the financial data, we assume that the log returns have a finite <math>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>b</mi>\u0000 </mrow></math>th moment for <math>\u0000 <mrow>\u0000 <mi>b</mi>\u0000 <mo>∈</mo>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mn>2</mn>\u0000 <mo>]</mo>\u0000 </mrow></math>. Then, we propose a Huber regression estimator that has an optimal convergence rate of <math>\u0000 <mrow>\u0000 <msup>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>−</mo>\u0000 <mi>b</mi>\u0000 <mo>)</mo>\u0000 <mo>/</mo>\u0000 <mi>b</mi>\u0000 </mrow>\u0000 </msup>\u0000 </mrow></math>. We also discuss how to adjust bias coming from Huber loss and show its asymptotic properties.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43268282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New associate editors 新助理编辑
IF 0.9 4区 数学
Journal of Time Series Analysis Pub Date : 2022-08-21 DOI: 10.1111/jtsa.12665
{"title":"New associate editors","authors":"","doi":"10.1111/jtsa.12665","DOIUrl":"https://doi.org/10.1111/jtsa.12665","url":null,"abstract":"<p>We welcome Dr Tucker McElroy and Professor Stathis Paparoditis to the editorial board of the <i>Journal of Time Series Analysis</i>, who both join as Associate Editors with immediate effect.</p><p>Tucker McElroy is senior time series mathematical statistician at the US Census Bureau. His research interests are seasonal adjustment, signal extraction, and frequency domain methodology. He has several projects on GitHub, including the R package Ecce Signum for multivariate time series, and has published his research in <i>Annals of Statistics</i>, <i>JASA</i>, <i>Biometrika</i>, <i>JRSSB</i>, and <i>JTSA</i>, among others.</p><p>Stathis Paparoditis is Professor of Mathematical Statistics at the University of Cyprus. His research interests cover nonparametric methods for univariate, multivariate and functional time series, including bootstrap and resampling methods, tests of stationarity, goodness-of-fit tests, and prediction. He has published his research in <i>Annals of Statistics</i>, <i>JRSSB</i>, <i>JASA</i>, <i>Biometrika</i>, <i>Bernoulli</i>, <i>Econometrica</i>, <i>Econometric Theory</i>, <i>Journal of Econometrics</i>, and <i>JTSA</i>, among others.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12665","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72323085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information 问题信息
IF 0.9 4区 数学
Journal of Time Series Analysis Pub Date : 2022-08-01 DOI: 10.1002/smi.3064
{"title":"Issue Information","authors":"","doi":"10.1002/smi.3064","DOIUrl":"https://doi.org/10.1002/smi.3064","url":null,"abstract":"","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41663371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Directed graphs and variable selection in large vector autoregressive models 大向量自回归模型中的有向图和变量选择
IF 0.9 4区 数学
Journal of Time Series Analysis Pub Date : 2022-07-24 DOI: 10.1111/jtsa.12664
Dominik Bertsche, Ralf Brüggemann, Christian Kascha
{"title":"Directed graphs and variable selection in large vector autoregressive models","authors":"Dominik Bertsche,&nbsp;Ralf Brüggemann,&nbsp;Christian Kascha","doi":"10.1111/jtsa.12664","DOIUrl":"10.1111/jtsa.12664","url":null,"abstract":"<p>We represent the dynamic relation among variables in vector autoregressive (VAR) models as directed graphs. Based on these graphs, we identify so-called strongly connected components. Using this graphical representation, we consider the problem of variable choice. We use the relations among the strongly connected components to select variables that need to be included in a VAR if interest is in impulse response analysis of a given set of variables. Our theoretical contributions show that the set of selected variables from the graphical method coincides with the set of variables that is multi-step causal for the variables of interest by relating the paths in the graph to the coefficients of the ‘direct’ VAR representation. An empirical application illustrates the usefulness of the suggested approach: Including the selected variables into a small US monetary VAR is useful for impulse response analysis as it avoids the well-known ‘price-puzzle’.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12664","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45500397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信