{"title":"Multi-purpose open-end monitoring procedures for multivariate observations based on the empirical distribution function","authors":"Mark Holmes, Ivan Kojadinovic, Alex Verhoijsen","doi":"10.1111/jtsa.12683","DOIUrl":null,"url":null,"abstract":"<p>We propose non-parametric open-end sequential testing procedures that can detect all types of changes in the contemporary distribution function of possibly multivariate observations. Their asymptotic properties are theoretically investigated under stationarity and under alternatives to stationarity. Monte Carlo experiments reveal their good finite-sample behavior in the case of continuous univariate, bivariate and trivariate observations. A short data example concludes the work.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"45 1","pages":"27-56"},"PeriodicalIF":1.2000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12683","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose non-parametric open-end sequential testing procedures that can detect all types of changes in the contemporary distribution function of possibly multivariate observations. Their asymptotic properties are theoretically investigated under stationarity and under alternatives to stationarity. Monte Carlo experiments reveal their good finite-sample behavior in the case of continuous univariate, bivariate and trivariate observations. A short data example concludes the work.
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.