{"title":"重尾误差GRCAR(p)模型的几何遍历性和条件自加权M估计","authors":"Xiaoyan Li, Jiazhu Pan, Anchao Song","doi":"10.1111/jtsa.12680","DOIUrl":null,"url":null,"abstract":"<p>We establish the geometric ergodicity for general stochastic functional autoregressive (linear and nonlinear) models with heavy-tailed errors. The stationarity conditions for a generalized random coefficient autoregressive model (GRCAR(<math>\n <mrow>\n <mi>p</mi>\n </mrow></math>)) are presented as a corollary. And then, a conditional self-weighted M-estimator for parameters in the GRCAR(<math>\n <mrow>\n <mi>p</mi>\n </mrow></math>) is proposed. The asymptotic normality of this estimator is discussed by allowing infinite variance innovations. Simulation experiments are carried out to assess the finite-sample performance of the proposed methodology and theory, and a real heavy-tailed data example is given as illustration.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12680","citationCount":"0","resultStr":"{\"title\":\"Geometric ergodicity and conditional self-weighted M-estimator of a GRCAR(\\n \\n p\\n ) model with heavy-tailed errors\",\"authors\":\"Xiaoyan Li, Jiazhu Pan, Anchao Song\",\"doi\":\"10.1111/jtsa.12680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish the geometric ergodicity for general stochastic functional autoregressive (linear and nonlinear) models with heavy-tailed errors. The stationarity conditions for a generalized random coefficient autoregressive model (GRCAR(<math>\\n <mrow>\\n <mi>p</mi>\\n </mrow></math>)) are presented as a corollary. And then, a conditional self-weighted M-estimator for parameters in the GRCAR(<math>\\n <mrow>\\n <mi>p</mi>\\n </mrow></math>) is proposed. The asymptotic normality of this estimator is discussed by allowing infinite variance innovations. Simulation experiments are carried out to assess the finite-sample performance of the proposed methodology and theory, and a real heavy-tailed data example is given as illustration.</p>\",\"PeriodicalId\":49973,\"journal\":{\"name\":\"Journal of Time Series Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12680\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Time Series Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12680\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12680","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Geometric ergodicity and conditional self-weighted M-estimator of a GRCAR(
p
) model with heavy-tailed errors
We establish the geometric ergodicity for general stochastic functional autoregressive (linear and nonlinear) models with heavy-tailed errors. The stationarity conditions for a generalized random coefficient autoregressive model (GRCAR()) are presented as a corollary. And then, a conditional self-weighted M-estimator for parameters in the GRCAR() is proposed. The asymptotic normality of this estimator is discussed by allowing infinite variance innovations. Simulation experiments are carried out to assess the finite-sample performance of the proposed methodology and theory, and a real heavy-tailed data example is given as illustration.
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.