{"title":"具有局部静止误差过程的高维线性模型推理","authors":"Jiaqi Xia, Yu Chen, Xiao Guo","doi":"10.1111/jtsa.12686","DOIUrl":null,"url":null,"abstract":"<p>Linear regression models with stationary errors are well studied but the non-stationary assumption is more realistic in practice. An estimation and inference procedure for high-dimensional linear regression models with locally stationary error processes is developed. Combined with a proper estimator for the autocovariance matrix of the non-stationary error, the desparsified lasso estimator is adopted for the statistical inference of the regression coefficients under the fixed design setting. The consistency and asymptotic normality of the desparsified estimators is established under certain regularity conditions. Element-wise confidence intervals for regression coefficients are constructed. The finite sample performance of our method is assessed by simulation and real data analysis.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inference for high-dimensional linear models with locally stationary error processes\",\"authors\":\"Jiaqi Xia, Yu Chen, Xiao Guo\",\"doi\":\"10.1111/jtsa.12686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Linear regression models with stationary errors are well studied but the non-stationary assumption is more realistic in practice. An estimation and inference procedure for high-dimensional linear regression models with locally stationary error processes is developed. Combined with a proper estimator for the autocovariance matrix of the non-stationary error, the desparsified lasso estimator is adopted for the statistical inference of the regression coefficients under the fixed design setting. The consistency and asymptotic normality of the desparsified estimators is established under certain regularity conditions. Element-wise confidence intervals for regression coefficients are constructed. The finite sample performance of our method is assessed by simulation and real data analysis.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12686\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12686","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Inference for high-dimensional linear models with locally stationary error processes
Linear regression models with stationary errors are well studied but the non-stationary assumption is more realistic in practice. An estimation and inference procedure for high-dimensional linear regression models with locally stationary error processes is developed. Combined with a proper estimator for the autocovariance matrix of the non-stationary error, the desparsified lasso estimator is adopted for the statistical inference of the regression coefficients under the fixed design setting. The consistency and asymptotic normality of the desparsified estimators is established under certain regularity conditions. Element-wise confidence intervals for regression coefficients are constructed. The finite sample performance of our method is assessed by simulation and real data analysis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.