Lifetime Data AnalysisPub Date : 2022-04-01Epub Date: 2022-01-21DOI: 10.1007/s10985-022-09545-9
Ruosha Li, Jing Ning, Ziding Feng
{"title":"Estimation and inference of predictive discrimination for survival outcome risk prediction models.","authors":"Ruosha Li, Jing Ning, Ziding Feng","doi":"10.1007/s10985-022-09545-9","DOIUrl":"10.1007/s10985-022-09545-9","url":null,"abstract":"<p><p>Accurate risk prediction has been the central goal in many studies of survival outcomes. In the presence of multiple risk factors, a censored regression model can be employed to estimate a risk prediction rule. Before the prediction tool can be popularized for practical use, it is crucial to rigorously assess its prediction performance. In our motivating example, researchers are interested in developing and validating a risk prediction tool to identify future lung cancer cases by integrating demographic information, disease characteristics and smoking-related data. Considering the long latency period of cancer, it is desirable for a prediction tool to achieve discriminative performance that does not weaken over time. We propose estimation and inferential procedures to comprehensively assess both the overall predictive discrimination and the temporal pattern of an estimated prediction rule. The proposed methods readily accommodate commonly used censored regression models, including the Cox proportional hazards model and the accelerated failure time model. The estimators are consistent and asymptotically normal, and reliable variance estimators are also developed. The proposed methods offer an informative tool for inferring time-dependent predictive discrimination, as well as for comparing the discrimination performance between candidate models. Applications of the proposed methods demonstrate enduring performance of the risk prediction tool in the PLCO study and detected decaying performance in a study of liver disease.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"28 2","pages":"219-240"},"PeriodicalIF":1.3,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084512/pdf/nihms-1885116.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9349535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lifetime Data AnalysisPub Date : 2022-04-01Epub Date: 2022-01-15DOI: 10.1007/s10985-022-09546-8
Yayun Xu, Soyoung Kim, Mei-Jie Zhang, David Couper, Kwang Woo Ahn
{"title":"Competing risks regression models with covariates-adjusted censoring weight under the generalized case-cohort design.","authors":"Yayun Xu, Soyoung Kim, Mei-Jie Zhang, David Couper, Kwang Woo Ahn","doi":"10.1007/s10985-022-09546-8","DOIUrl":"10.1007/s10985-022-09546-8","url":null,"abstract":"<p><p>A generalized case-cohort design has been used when measuring exposures is expensive and events are not rare in the full cohort. This design collects expensive exposure information from a (stratified) randomly selected subset from the full cohort, called the subcohort, and a fraction of cases outside the subcohort. For the full cohort study with competing risks, He et al. (Scand J Stat 43:103-122, 2016) studied the non-stratified proportional subdistribution hazards model with covariate-dependent censoring to directly evaluate covariate effects on the cumulative incidence function. In this paper, we propose a stratified proportional subdistribution hazards model with covariate-adjusted censoring weights for competing risks data under the generalized case-cohort design. We consider a general class of weight functions to account for the generalized case-cohort design. Then, we derive the optimal weight function which minimizes the asymptotic variance of parameter estimates within the general class of weight functions. The proposed estimator is shown to be consistent and asymptotically normally distributed. The simulation studies show (i) the proposed estimator with covariate-adjusted weight is unbiased when the censoring distribution depends on covariates; and (ii) the proposed estimator with the optimal weight function gains parameter estimation efficiency. We apply the proposed method to stem cell transplantation and diabetes data sets.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"28 2","pages":"241-262"},"PeriodicalIF":1.2,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8977245/pdf/nihms-1782166.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9280624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A calibrated Bayesian method for the stratified proportional hazards model with missing covariates.","authors":"Soyoung Kim, Jae-Kwang Kim, Kwang Woo Ahn","doi":"10.1007/s10985-021-09542-4","DOIUrl":"https://doi.org/10.1007/s10985-021-09542-4","url":null,"abstract":"<p><p>Missing covariates are commonly encountered when evaluating covariate effects on survival outcomes. Excluding missing data from the analysis may lead to biased parameter estimation and a misleading conclusion. The inverse probability weighting method is widely used to handle missing covariates. However, obtaining asymptotic variance in frequentist inference is complicated because it involves estimating parameters for propensity scores. In this paper, we propose a new approach based on an approximate Bayesian method without using Taylor expansion to handle missing covariates for survival data. We consider a stratified proportional hazards model so that it can be used for the non-proportional hazards structure. Two cases for missing pattern are studied: a single missing pattern and multiple missing patterns. The proposed estimators are shown to be consistent and asymptotically normal, which matches the frequentist asymptotic properties. Simulation studies show that our proposed estimators are asymptotically unbiased and the credible region obtained from posterior distribution is close to the frequentist confidence interval. The algorithm is straightforward and computationally efficient. We apply the proposed method to a stem cell transplantation data set.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"28 2","pages":"169-193"},"PeriodicalIF":1.3,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8977246/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9280623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new approach to estimation of the proportional hazards model based on interval-censored data with missing covariates","authors":"Ruiwen Zhou, Huiqiong Li, Jianguo Sun, Niansheng Tang","doi":"10.1007/s10985-022-09550-y","DOIUrl":"https://doi.org/10.1007/s10985-022-09550-y","url":null,"abstract":"","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"28 1","pages":"335 - 355"},"PeriodicalIF":1.3,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45516973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lifetime Data AnalysisPub Date : 2022-01-01Epub Date: 2021-11-22DOI: 10.1007/s10985-021-09539-z
Song Zhang, Yang Qu, Yu Cheng, Oscar L Lopez, Abdus S Wahed
{"title":"Prognostic accuracy for predicting ordinal competing risk outcomes using ROC surfaces.","authors":"Song Zhang, Yang Qu, Yu Cheng, Oscar L Lopez, Abdus S Wahed","doi":"10.1007/s10985-021-09539-z","DOIUrl":"https://doi.org/10.1007/s10985-021-09539-z","url":null,"abstract":"<p><p>Many medical conditions are marked by a sequence of events in association with continuous changes in biomarkers. Few works have evaluated the overall accuracy of a biomarker in predicting disease progression. We thus extend the concept of receiver operating characteristic (ROC) surface and the volume under the surface (VUS) from multi-category outcomes to ordinal competing-risk outcomes that are also subject to noninformative censoring. Two VUS estimators are considered. One is based on the definition of the ROC surface and obtained by integrating the estimated ROC surface. The other is an inverse probability weighted U estimator that is built upon the equivalence of the VUS to the concordance probability between the marker and sequential outcomes. Both estimators have nice asymptotic results that can be derived using counting process techniques and U-statistics theory. We illustrate their good practical performances through simulations and applications to two studies of cognition and a transplant dataset.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"28 1","pages":"1-22"},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39646768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lifetime Data AnalysisPub Date : 2022-01-01Epub Date: 2021-11-25DOI: 10.1007/s10985-021-09540-6
Zhongwen Zhang, Xiaoguang Wang, Yingwei Peng
{"title":"An additive hazards frailty model with semi-varying coefficients.","authors":"Zhongwen Zhang, Xiaoguang Wang, Yingwei Peng","doi":"10.1007/s10985-021-09540-6","DOIUrl":"https://doi.org/10.1007/s10985-021-09540-6","url":null,"abstract":"<p><p>Proportional hazards frailty models have been extensively investigated and used to analyze clustered and recurrent failure times data. However, the proportional hazards assumption in the models may not always hold in practice. In this paper, we propose an additive hazards frailty model with semi-varying coefficients, which allows some covariate effects to be time-invariant while other covariate effects to be time-varying. The time-varying and time-invariant regression coefficients are estimated by a set of estimating equations, whereas the frailty parameter is estimated by the moment method. The large sample properties of the proposed estimators are established. The finite sample performance of the estimators is examined by simulation studies. The proposed model and estimation are illustrated with an analysis of data from a rehospitalization study of colorectal cancer patients.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"28 1","pages":"116-138"},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39909943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Maximum likelihood estimation for length-biased and interval-censored data with a nonsusceptible fraction.","authors":"Pao-Sheng Shen, Yingwei Peng, Hsin-Jen Chen, Chyong-Mei Chen","doi":"10.1007/s10985-021-09536-2","DOIUrl":"https://doi.org/10.1007/s10985-021-09536-2","url":null,"abstract":"<p><p>Left-truncated data are often encountered in epidemiological cohort studies, where individuals are recruited according to a certain cross-sectional sampling criterion. Length-biased data, a special case of left-truncated data, assume that the incidence of the initial event follows a homogeneous Poisson process. In this article, we consider an analysis of length-biased and interval-censored data with a nonsusceptible fraction. We first point out the importance of a well-defined target population, which depends on the prior knowledge for the support of the failure times of susceptible individuals. Given the target population, we proceed with a length-biased sampling and draw valid inferences from a length-biased sample. When there is no covariate, we show that it suffices to consider a discrete version of the survival function for the susceptible individuals with jump points at the left endpoints of the censoring intervals when maximizing the full likelihood function, and propose an EM algorithm to obtain the nonparametric maximum likelihood estimates of nonsusceptible rate and the survival function of the susceptible individuals. We also develop a novel graphical method for assessing the stationarity assumption. When covariates are present, we consider the Cox proportional hazards model for the survival time of the susceptible individuals and the logistic regression model for the probability of being susceptible. We construct the full likelihood function and obtain the nonparametric maximum likelihood estimates of the regression parameters by employing the EM algorithm. The large sample properties of the estimates are established. The performance of the method is assessed by simulations. The proposed model and method are applied to data from an early-onset diabetes mellitus study.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"28 1","pages":"68-88"},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39497382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lifetime Data AnalysisPub Date : 2022-01-01Epub Date: 2022-01-12DOI: 10.1007/s10985-021-09541-5
Mihai C Giurcanu, Theodore G Karrison
{"title":"Nonparametric inference in the accelerated failure time model using restricted means.","authors":"Mihai C Giurcanu, Theodore G Karrison","doi":"10.1007/s10985-021-09541-5","DOIUrl":"https://doi.org/10.1007/s10985-021-09541-5","url":null,"abstract":"<p><p>We propose a nonparametric estimate of the scale-change parameter for characterizing the difference between two survival functions under the accelerated failure time model using an estimating equation based on restricted means. Advantages of our restricted means based approach compared to current nonparametric procedures is the strictly monotone nature of the estimating equation as a function of the scale-change parameter, leading to a unique root, as well as the availability of a direct standard error estimate, avoiding the need for hazard function estimation or re-sampling to conduct inference. We derive the asymptotic properties of the proposed estimator for fixed and for random point of restriction. In a simulation study, we compare the performance of the proposed estimator with parametric and nonparametric competitors in terms of bias, efficiency, and accuracy of coverage probabilities. The restricted means based approach provides unbiased estimates and accurate confidence interval coverage rates with efficiency ranging from 81% to 95% relative to fitting the correct parametric model. An example from a randomized clinical trial in head and neck cancer is provided to illustrate an application of the methodology in practice.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"28 1","pages":"23-39"},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39902249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lifetime Data AnalysisPub Date : 2022-01-01Epub Date: 2022-01-09DOI: 10.1007/s10985-021-09543-3
Yanlin Tang, Xinyuan Song, Grace Yun Yi
{"title":"Bayesian analysis under accelerated failure time models with error-prone time-to-event outcomes.","authors":"Yanlin Tang, Xinyuan Song, Grace Yun Yi","doi":"10.1007/s10985-021-09543-3","DOIUrl":"https://doi.org/10.1007/s10985-021-09543-3","url":null,"abstract":"<p><p>We consider accelerated failure time models with error-prone time-to-event outcomes. The proposed models extend the conventional accelerated failure time model by allowing time-to-event responses to be subject to measurement errors. We describe two measurement error models, a logarithm transformation regression measurement error model and an additive error model with a positive increment, to delineate possible scenarios of measurement error in time-to-event outcomes. We develop Bayesian approaches to conduct statistical inference. Efficient Markov chain Monte Carlo algorithms are developed to facilitate the posterior inference. Extensive simulation studies are conducted to assess the performance of the proposed method, and an application to a study of Alzheimer's disease is presented.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"28 1","pages":"139-168"},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39658418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}