{"title":"具有协变量测量误差的高维稀疏加性风险回归的双偏置校正。","authors":"Xiaobo Wang, Jiayu Huang, Guosheng Yin, Jian Huang, Yuanshan Wu","doi":"10.1007/s10985-022-09568-2","DOIUrl":null,"url":null,"abstract":"<p><p>We propose an inferential procedure for additive hazards regression with high-dimensional survival data, where the covariates are prone to measurement errors. We develop a double bias correction method by first correcting the bias arising from measurement errors in covariates through an estimating function for the regression parameter. By adopting the convex relaxation technique, a regularized estimator for the regression parameter is obtained by elaborately designing a feasible loss based on the estimating function, which is solved via linear programming. Using the Neyman orthogonality, we propose an asymptotically unbiased estimator which further corrects the bias caused by the convex relaxation and regularization. We derive the convergence rate of the proposed estimator and establish the asymptotic normality for the low-dimensional parameter estimator and the linear combination thereof, accompanied with a consistent estimator for the variance. Numerical experiments are carried out on both simulated and real datasets to demonstrate the promising performance of the proposed double bias correction method.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double bias correction for high-dimensional sparse additive hazards regression with covariate measurement errors.\",\"authors\":\"Xiaobo Wang, Jiayu Huang, Guosheng Yin, Jian Huang, Yuanshan Wu\",\"doi\":\"10.1007/s10985-022-09568-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose an inferential procedure for additive hazards regression with high-dimensional survival data, where the covariates are prone to measurement errors. We develop a double bias correction method by first correcting the bias arising from measurement errors in covariates through an estimating function for the regression parameter. By adopting the convex relaxation technique, a regularized estimator for the regression parameter is obtained by elaborately designing a feasible loss based on the estimating function, which is solved via linear programming. Using the Neyman orthogonality, we propose an asymptotically unbiased estimator which further corrects the bias caused by the convex relaxation and regularization. We derive the convergence rate of the proposed estimator and establish the asymptotic normality for the low-dimensional parameter estimator and the linear combination thereof, accompanied with a consistent estimator for the variance. Numerical experiments are carried out on both simulated and real datasets to demonstrate the promising performance of the proposed double bias correction method.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-022-09568-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-022-09568-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Double bias correction for high-dimensional sparse additive hazards regression with covariate measurement errors.
We propose an inferential procedure for additive hazards regression with high-dimensional survival data, where the covariates are prone to measurement errors. We develop a double bias correction method by first correcting the bias arising from measurement errors in covariates through an estimating function for the regression parameter. By adopting the convex relaxation technique, a regularized estimator for the regression parameter is obtained by elaborately designing a feasible loss based on the estimating function, which is solved via linear programming. Using the Neyman orthogonality, we propose an asymptotically unbiased estimator which further corrects the bias caused by the convex relaxation and regularization. We derive the convergence rate of the proposed estimator and establish the asymptotic normality for the low-dimensional parameter estimator and the linear combination thereof, accompanied with a consistent estimator for the variance. Numerical experiments are carried out on both simulated and real datasets to demonstrate the promising performance of the proposed double bias correction method.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.