{"title":"A uniformisation-driven algorithm for inference-related estimation of a phase-type ageing model.","authors":"Boquan Cheng, Rogemar Mamon","doi":"10.1007/s10985-022-09577-1","DOIUrl":null,"url":null,"abstract":"<p><p>We develop an efficient algorithm to compute the likelihood of the phase-type ageing model. The proposed algorithm uses the uniformisation method to stabilise the numerical calculation. It also utilises a vectorised formula to only calculate the necessary elements of the probability distribution. Our algorithm, with an error's upper bound, could be adjusted easily to tackle the likelihood calculation of the Coxian models. Furthermore, we compare the speed and the accuracy of the proposed algorithm with those of the traditional method using the matrix exponential. Our algorithm is faster and more accurate than the traditional method in calculating the likelihood. Based on our experiments, we recommend using 20 sets of randomly-generated initial values for the optimisation to get a reliable estimate for which the evaluated likelihood is close to the maximum likelihood.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"29 1","pages":"142-187"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-022-09577-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
We develop an efficient algorithm to compute the likelihood of the phase-type ageing model. The proposed algorithm uses the uniformisation method to stabilise the numerical calculation. It also utilises a vectorised formula to only calculate the necessary elements of the probability distribution. Our algorithm, with an error's upper bound, could be adjusted easily to tackle the likelihood calculation of the Coxian models. Furthermore, we compare the speed and the accuracy of the proposed algorithm with those of the traditional method using the matrix exponential. Our algorithm is faster and more accurate than the traditional method in calculating the likelihood. Based on our experiments, we recommend using 20 sets of randomly-generated initial values for the optimisation to get a reliable estimate for which the evaluated likelihood is close to the maximum likelihood.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.