双截尾数据的半参数回归分析及其在潜伏期估计中的应用。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kin Yau Wong, Qingning Zhou, Tao Hu
{"title":"双截尾数据的半参数回归分析及其在潜伏期估计中的应用。","authors":"Kin Yau Wong,&nbsp;Qingning Zhou,&nbsp;Tao Hu","doi":"10.1007/s10985-022-09567-3","DOIUrl":null,"url":null,"abstract":"<p><p>The incubation period is a key characteristic of an infectious disease. In the outbreak of a novel infectious disease, accurate evaluation of the incubation period distribution is critical for designing effective prevention and control measures . Estimation of the incubation period distribution based on limited information from retrospective inspection of infected cases is highly challenging due to censoring and truncation. In this paper, we consider a semiparametric regression model for the incubation period and propose a sieve maximum likelihood approach for estimation based on the symptom onset time, travel history, and basic demographics of reported cases. The approach properly accounts for the pandemic growth and selection bias in data collection. We also develop an efficient computation method and establish the asymptotic properties of the proposed estimators. We demonstrate the feasibility and advantages of the proposed methods through extensive simulation studies and provide an application to a dataset on the outbreak of COVID-19.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9281361/pdf/","citationCount":"3","resultStr":"{\"title\":\"Semiparametric regression analysis of doubly-censored data with applications to incubation period estimation.\",\"authors\":\"Kin Yau Wong,&nbsp;Qingning Zhou,&nbsp;Tao Hu\",\"doi\":\"10.1007/s10985-022-09567-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The incubation period is a key characteristic of an infectious disease. In the outbreak of a novel infectious disease, accurate evaluation of the incubation period distribution is critical for designing effective prevention and control measures . Estimation of the incubation period distribution based on limited information from retrospective inspection of infected cases is highly challenging due to censoring and truncation. In this paper, we consider a semiparametric regression model for the incubation period and propose a sieve maximum likelihood approach for estimation based on the symptom onset time, travel history, and basic demographics of reported cases. The approach properly accounts for the pandemic growth and selection bias in data collection. We also develop an efficient computation method and establish the asymptotic properties of the proposed estimators. We demonstrate the feasibility and advantages of the proposed methods through extensive simulation studies and provide an application to a dataset on the outbreak of COVID-19.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9281361/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-022-09567-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-022-09567-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

潜伏期是传染病的一个关键特征。在新型传染病暴发中,准确评估潜伏期分布对制定有效的防控措施至关重要。由于审查和截断,根据对感染病例进行回顾性检查的有限信息估计潜伏期分布极具挑战性。在本文中,我们考虑了潜伏期的半参数回归模型,并提出了基于症状发作时间、旅行史和报告病例的基本人口统计数据的筛最大似然方法进行估计。该方法恰当地解释了大流行的增长和数据收集中的选择偏差。我们还开发了一种有效的计算方法,并建立了所提估计量的渐近性质。我们通过广泛的模拟研究证明了所提出方法的可行性和优势,并提供了对COVID-19爆发数据集的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Semiparametric regression analysis of doubly-censored data with applications to incubation period estimation.

Semiparametric regression analysis of doubly-censored data with applications to incubation period estimation.

Semiparametric regression analysis of doubly-censored data with applications to incubation period estimation.

Semiparametric regression analysis of doubly-censored data with applications to incubation period estimation.

The incubation period is a key characteristic of an infectious disease. In the outbreak of a novel infectious disease, accurate evaluation of the incubation period distribution is critical for designing effective prevention and control measures . Estimation of the incubation period distribution based on limited information from retrospective inspection of infected cases is highly challenging due to censoring and truncation. In this paper, we consider a semiparametric regression model for the incubation period and propose a sieve maximum likelihood approach for estimation based on the symptom onset time, travel history, and basic demographics of reported cases. The approach properly accounts for the pandemic growth and selection bias in data collection. We also develop an efficient computation method and establish the asymptotic properties of the proposed estimators. We demonstrate the feasibility and advantages of the proposed methods through extensive simulation studies and provide an application to a dataset on the outbreak of COVID-19.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信