{"title":"Semiparametric regression analysis of doubly-censored data with applications to incubation period estimation.","authors":"Kin Yau Wong, Qingning Zhou, Tao Hu","doi":"10.1007/s10985-022-09567-3","DOIUrl":null,"url":null,"abstract":"<p><p>The incubation period is a key characteristic of an infectious disease. In the outbreak of a novel infectious disease, accurate evaluation of the incubation period distribution is critical for designing effective prevention and control measures . Estimation of the incubation period distribution based on limited information from retrospective inspection of infected cases is highly challenging due to censoring and truncation. In this paper, we consider a semiparametric regression model for the incubation period and propose a sieve maximum likelihood approach for estimation based on the symptom onset time, travel history, and basic demographics of reported cases. The approach properly accounts for the pandemic growth and selection bias in data collection. We also develop an efficient computation method and establish the asymptotic properties of the proposed estimators. We demonstrate the feasibility and advantages of the proposed methods through extensive simulation studies and provide an application to a dataset on the outbreak of COVID-19.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9281361/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-022-09567-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
The incubation period is a key characteristic of an infectious disease. In the outbreak of a novel infectious disease, accurate evaluation of the incubation period distribution is critical for designing effective prevention and control measures . Estimation of the incubation period distribution based on limited information from retrospective inspection of infected cases is highly challenging due to censoring and truncation. In this paper, we consider a semiparametric regression model for the incubation period and propose a sieve maximum likelihood approach for estimation based on the symptom onset time, travel history, and basic demographics of reported cases. The approach properly accounts for the pandemic growth and selection bias in data collection. We also develop an efficient computation method and establish the asymptotic properties of the proposed estimators. We demonstrate the feasibility and advantages of the proposed methods through extensive simulation studies and provide an application to a dataset on the outbreak of COVID-19.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.